Lecture XX: डs.5 Motimunder gravity
Recall $s(t):=$ prition $s \mid$ a partide with respect to time $(t \geqslant 0)$

$$
v(t):=s^{\prime}(t)=\text { velocity }
$$

$$
\text { (speed }=|v(t)|)
$$

Newton's Law of Motion:
(I) A particle in a state of rest of motion will continue to be so unless an external free is applied to it.
(II)

$$
\begin{align*}
& a(t)=\text { acceleration }=s^{\prime \prime}(t) \\
& m=\text { mass } \\
& F=\text { free } \tag{*}
\end{align*}
$$

Then: $a(t)=\frac{F}{m}$, equivalently

$$
F=m a=m s^{\prime \prime}(t)
$$

(ordinary differential equation)
(III) To every action, there's an equal and opposite reaction.

GOAL: Solve $(*)$. Since $S^{\prime \prime}(t)$ is involved, weill need 2 initial conditions, Typically $S(0) \& S^{\prime}(0)$, To give a particular solution to (x)
51. Examples: Gravity free induces a constant acceleration $g \approx 9.8 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}=32 \frac{\mathrm{ft}}{\mathrm{s}^{2}}$

Problem 1: Find the motion of a stone of mass m which is cooped fum a print abse the surface of the Earth.
Solution: ref. pt.

Initial conditions: $S_{(0)}=0$ (reference $p t$)

$$
v(0)=0 \quad \begin{gathered}
\text { (doped } \\
\text { so no velocity) }
\end{gathered}
$$

Equation $m a(t)=\bar{T}=m g$
parity free, no the frees acting ms $S^{\prime \prime}(t)^{=a}(t)=g$ constant (n air usistance, (te)
Solve firs by integrateng twice (dn't fret the constants!)

- $v^{\prime}(t)=a(t)$ so $v(t)=\int g d t=g t+C_{1}$

Initial condition $v(0)=0$ yields $0=0+C_{1}$, so $C_{1}=0$ \&

- $s^{\prime}(t)=v(t)$ so $s(t)=\int g t d t=g \frac{t^{2}}{2}+C_{2}$ $r(t)=g t$

Initial condition $s(0)=0$ yields $0=0+C_{2}$, so $C_{2}=0 \&$ $s(t)=g \frac{t^{2}}{2}$
Solution: $s(t)=\frac{1}{2} g t^{2}$
General Solution $s(t)=\frac{1}{2} g t^{2}+C_{1} t+C_{2}$ is c_{1}, c_{2} constants These are determined by fixing 2 "independent" conditions.

Problem 2: Assume a store is thrown upwards at $128 \mathrm{ft} / \mathrm{s}$ from the roof of a building 320 ft high.
(1) Find its Kojectory
(2) Determine its maximal height
(b) \qquad at what lime does the stone reach the porend.

Solution:

Initial conditions

$$
\begin{aligned}
& S(0)=320 \\
& s^{\prime}(0)=128
\end{aligned}
$$

(thrown upwards, so sign is +)
Equation: $m a_{(f)}^{\prime \prime} F=-m g$ parity points in oppsite dinedion 50 height increase.

Again, we solve for $s(t)$ by integrating Trice:

$$
\begin{aligned}
& v(t)=\int s^{\prime \prime}(t)^{\prime} t=\int-g d t=-g t+c_{1} \\
& s(t)=\int v(t) d t=\int\left(-g t+c_{1}\right) d t=-g \frac{t^{2}}{2}+c_{1} t+c_{2}
\end{aligned}
$$

(1) Use initial anditions to find $C_{1} \& C_{2}$.

$$
\begin{aligned}
& S(0)=320=C_{2} \quad \& \quad S^{\prime}(0)=128=C_{1} \\
& \leadsto S(t)=-16 t^{2}+128 t+320 .
\end{aligned}
$$

(2) Maximal height $=t$ is a critical pt of $S(t)$ $v_{(t)}=S^{\prime}(t)=0$ so $0=-32 t+128$ we get $t=\frac{128}{32}=4>0$ So Maximilem height is reached after 4 seconds.

- $S(4)=$ maximum height $=-16 \cdot 4^{2}+128 \cdot 4+320=576 \mathrm{ft}$
(3) Hit the ground mans $s(t)=0$, We get a quadratic equation int that we can easily solve:

$$
-16 t^{2}+128 t+320=0 \text { mad } t=\frac{-128 \pm \sqrt{128^{2}+4 \cdot 16 \cdot 320}}{2 \cdot(-16)}
$$

We get $t=10$ \& $t=-2$ as solutions
We sly keep the me with $t>0$.
Conclude: The rock hits the pound after 10 seconds.
Q: What's its speed? A: $|v(10)|=|-32 \cdot 10+128|=|-192|=\frac{192 \frac{\mathrm{ft}}{\mathrm{s}} \text {, } 10}{}$

Summary: Set up the initial conditions

- Equation becomes $S^{\prime \prime}(t)= \pm g$
- Integrate trice to solve $f>s$ \& use initial conditionsto deturnime the constants $C_{1} \& C_{2}$
\$2 Escape Velocity:
GOAL: Determine the initial velocity v_{0} a rect fired vertically should have to come To rest \& escape completely fum the Earth's grasitatimal athaction

Assumption: Earth is rewed as a particle of mass M located at its center
When firing the rocket, the jaritatival free will depend on the distance from the rocket t o the center of the Earth.

Newton's Law of Gravitation: Any 2 particles of matter attract each other with a force that is jointly proportional To their masses \& insensely proportional to the square of the distance between them.

$$
F=-G \frac{M m}{s^{2}}
$$

$G>0$ constant, $s=\operatorname{distance}$ M, m masses
sign is - because the attraction is opposite to the dinctin of movement.
Using this, we get $m a(t)=\frac{-G M \cdot m}{S(t)^{2}} \leadsto s s^{\prime \prime}(t)=\frac{-G M}{S^{2}(t)}$
(nocluet's
perspective)
(graritatival fra)
Note: On the ground $s^{\prime \prime}(0)=-g$ \& $s(0)=R \quad \begin{gathered}(=\text { radios y/ the } \\ \text { Earth }\end{gathered}$
From this we get $-g=\frac{-G M}{R^{2}}$ at $t=0$, giving $G M=g R^{2}$

- Next, we replace this in (*) to get: $v^{\prime}(t)=s^{\prime \prime}(t)=-g \frac{R^{2}}{s^{2}(t)}$

Remember: We want T_{0} solve for $v(t)$!
Escape velocity $=$ initial rebrity $v(0)=v_{0}$ TO BE DETERMINED!
Trick: Think of S as a variable $(v=v(s))$ and use chain rede:

$$
\frac{d v}{d t}=\frac{d v}{d s} \frac{d s}{d t}=\frac{d v}{d s} \cdot v .
$$

So we get $\frac{d v}{d s} \cdot v=-g \frac{R^{2}}{s^{2}} m s v d v=-g \frac{R^{2}}{s^{2}} d s$

$$
(r \text {-side })(s \text {-side })
$$

The variables are separated \& we can solve by integrating

$$
\int v d v=\int-g \frac{R^{2}}{s^{2}} d s \quad m \quad \frac{v^{2}}{2}=g \frac{R^{2}}{s}+C
$$

Q: How to pick C ? $\quad v_{(0)}=v_{0} \& S(0)=R$ so at $t=0$
we get: $\frac{v_{0}^{2}}{2}=g \frac{R^{2}}{R}+C \leadsto C=\frac{v_{0}^{2}}{2}-g R$
Solution

$$
\frac{v^{2}}{2}(t)=\delta \frac{R^{2}}{S(t)}+\left(\frac{v_{0}^{2}}{2}-\delta R\right)
$$

Q: How to escape grasitatimal force?
A We need $v(t)>0$ fo all t
Note $\delta \frac{R^{2}}{S(t)} \longrightarrow 0^{+}$if we escape the Earth $\left(\operatorname{since} S_{(t)} \rightarrow \infty\right)$
So the only way to insure $v(t)>0$ is T_{0} require $\frac{v_{o}^{2}}{2}-g R \geqslant 0$
Since $r_{0}>0$, this gives $v_{0} \geqslant \sqrt{2 g R}=$ Escape velocity $=\sqrt{\frac{2 G M}{R}}$
Note This frumila works for any plane $(g=$ accelentatim due to gravity on that plane)
Values for Earth: $R=4000 \mathrm{mi}$

$$
\text { ss } \sqrt{2 g R} \simeq 7 \frac{\mathrm{mi}}{\mathrm{~s}}
$$

Applications (1) If the mass M is peseered but R dicuases $\square R^{\prime}$, then the escape velocity incuases! $\quad\left(=\sqrt{\frac{2 G \Pi}{R^{\prime}}}>\sqrt{\frac{2 G \Pi}{R}}\right)$

(2) If the escape velocity $>$ speed of light, the light can never escape the gravitational free. This explains black holes!

