GOAL: Find a method to compute areas of regions enclosed by simple curres. \$1. The Broblem of areas:

EXAMPLEI: Used convex polygons

Q: What about non-linear consex regions? A: Method of exhaustion. I. Pick a ps 2. Sick a 3. Build a

Note: . Convexity ensures all Ds are in the interior of the require!

• Triangles do <u>Not</u> such (mly met along edges / vertices)4. Make $n \rightarrow \infty$ a place the prints $P_{1,--,}P_{N}$ close to each other equidictivibuted along the border of the region S. The Triangles will endup covering almost all the region S, so they approximate Area(S). <u>EXAMPLE 2:</u> S = circle of radius R, $P_{\pm}(o,o)$ (hoose $P_{1,--,}P_{zN}$ as the restrices of a regular z^{N} -gon, called S_N.

Q: Why
$$Z^{m}$$
? A: At each step, we denote the angle Θ in half
 $\longrightarrow \Theta_{N} = \frac{e_{N}}{2^{m}} = \frac{\pi}{2^{m}}$,
2. At each step. So, is contained in S_{NF1} (sequel Ξ reterons E .
5. Easy and calculation: Area $(S_{N}) = z^{m}$ have of itainsoft.
Area $\Delta = \frac{h_{N-1} \cdot h_{N}}{z}$
 $(aclude: Area $(S_{N}) = z^{m} \frac{h_{N}}{h_{N}} \frac{h_{N}}{z} = \frac{h_{N}}{h_{N}}$ Divide (S_{N})
 $= \frac{h_{N}}{h_{N}}$ Divide (S_{N})
Q: What happens as we let $N \to \infty$? (i.e., as we exhaust the circle)
 $h_{N} = R \cos \Theta_{N} = R \cos \left(\frac{\pi}{(2^{m})}\right) \xrightarrow{N \to \infty} R$ = caching of the work
Swimeter $(S_{N}) \longrightarrow Swimeter of the circle = concum freezer = 2 it R
So Area (circle) $\stackrel{\frown}{=} \lim_{N\to\infty} Nrea(S_{N}) = \frac{R}{2} z T R = \mathbb{R} \mathbb{R}^{2}$
Q: What is we had taken circumscribed Z^{M} -gues when them inscribed zero?
 $M_{N} = \frac{\Phi_{N}}{R}$ $O_{N} = \frac{R}{2}$ $O_{N} = \frac{\pi}{R}$
 $\frac{M_{N}E: i: Tomponie, scene at the wideprints of each side
of the Z^{M} -gue Z $Z = \frac{\pi}{R}$ $O_{N} = \frac{R}{2}$ $Trunter (Outer S_{N}) = \frac{R}{2}$ $Trunter (Outer S_{N})$
 $Area (Outer S_{N}) = 2^{M} \cdot \frac{R}{2} = \frac{R}{2}$ $Trunter (Outer S_{N})$$$$

We get
$$Area(S_N) \leq Area(Liede) \leq Area(Oute(S_N))$$
 (K)
 $\frac{h_{12}}{2}$ Seim $(S_N) \leq Area(Liede) \leq \frac{n}{2}$ Seiminter (Outer S_N)
 $R^2 = \frac{1}{12}$ (Here R^2 (Here justifies Δ)
 $R^2 = \frac{1}{12}$ (Here justifies Δ)
 $R^2 = \frac{1}{12}$ (Here justifies Δ)
Obs. (), We get the formula for Area (Liede) from the Strinuter (Liede)
 2 . We can use thes without to approximate T to any digit we want!
 Q How to approximate T ?
Set $R = 1$. Use $h_{N} = c_{N} = \frac{1}{2^{N}}$ (m_{12})
 $B_{N} = 2 \tan \frac{T}{2^{N}}$ mp Immed Science $2^{N+1} \sin \left(\frac{T}{2^{N}}\right)$
 $B_{N} = 2 \tan \frac{T}{2^{N}}$ or Outer Science $2^{N+1} \lim_{Z^{N}} \frac{1}{2^{N}} \lim_{Z^{N}} \frac{T}{2^{N}} \sum_{Z^{N}} \sum_{Z^{N}} \frac{1}{2^{N}} \lim_{Z^{N}} \frac{T}{2^{N}} \sum_{Z^{N}} \sum_{Z^{N}}$

to compute array under the graph of a positive functions, replacing Δs with rectangles. This will had naturally to "Riemann Sums" defining integrals. $A = S_a F(x) dx = \left[\frac{y - f(x)}{y} \right]_{x}$