Lecture XXI: $\$ 6.2$ The Swblem of aras
GOAL: Find a method To compute areas of regions enclosed by simple curves.
\$1. The Problem of aras:
EXAMPLE 1: Closed convex polygons

1. Triangulate it from one vertex
2. Add up the areas of the triangles
\# Triangles $=$ \# sides -2
Q: What about mo-limeer convex regis?
A: Method of exhaustion.
3. Pick a print P in its inters

4. Pick a finite number of prints in the brendan say, p_{1}, \ldots, p_{n} (dorcusise)
5. Build all triangles $P P_{1} P_{2}, P P_{2} P_{3}, \ldots, P P_{n-1} P_{n, \lambda}$ $P P_{n} P_{1}$
Note: Convexity ensues all As ace in the interisi of the regina!

- Triangles do Not sulap (mil mut along edges/verties)

4. Make $n \rightarrow \infty$ \& place the prints p_{1}, \ldots, p_{n} doe to each other equidistributed along the brown of the ayin S The triangles will endup corning almat all the rein S, so they approximate Aral (S).
EXAMPLE 2: $S=$ circe of radius $R, P=(0,0)$
Choose $p_{1}, \ldots, P_{2 N}$ as the reties of a ugglar 2^{N}-eon, called S_{N}.

$n=2^{N}$

S_{3}
S_{4}
$\theta_{3}=\frac{\pi}{4}$ $\theta_{4}=\frac{\pi}{8}$

Q: Why 2^{n} ? A :1. At each step, we divide the angle θ in half

$$
\rightarrow \theta_{N}=\frac{2 \pi}{2^{N}}=\frac{\pi}{2^{N-1}}
$$

2. At each slip. S_{N} is untainedin S_{N+1} (square \subseteq station $\left.\leq ..\right)$
3. Easy ana calculation: $A_{\text {ma }}\left(S_{N}\right)=2^{N}$ Ama of triangle.

Ara $\Delta=\frac{h_{N} \cdot b_{N}}{2}$
Conclude: $\operatorname{Ama}\left(S_{N}\right)=2^{N} \frac{h_{M} b_{N}}{2}=\frac{h_{N}}{2}\left(2^{N} b_{N}\right)$

$$
=\frac{h_{N}}{2} \text { Primate }\left(S_{N}\right)
$$

Q: What happens as we let $N \rightarrow \infty$? (ie, as we exhaust the circe)

$$
\begin{aligned}
& h_{N}=R \cos \theta_{N}=R \cos \left(\frac{\pi}{2^{N-1}}\right) \xrightarrow[N \rightarrow \infty]{\longrightarrow} R=\text { radius of the circle } \\
& \text { Trimeter }\left(S_{N}\right) \xrightarrow[N \rightarrow \infty]{\longrightarrow} \text { Puimeter of the circle }=\text { uncumferexce }=2 \pi R \\
& \text { So Aria }(\text { arch }) \stackrel{\wedge}{=} \lim _{N \rightarrow \infty} \text { Area }\left(S_{N}\right)=\frac{R}{2} 2 \pi R=\pi R^{2}
\end{aligned}
$$

Q: What if we had taken circumscribed 2^{N}-gas rather than inscribed sones?

Outer S_{2}
$\theta_{2}=\frac{\pi}{2}$

Outer S_{3} $\theta_{3}=\frac{\pi}{4}$

Outen_{4} $\theta_{4}=\frac{\pi}{8}$
N. te: 1. Tangencies recon at the midpoints if each side of the 2^{N}-gan
2. Owtu side has length $B_{N} \& 2 R \tan \frac{\theta_{N}}{2}=B_{N}$

$$
\text { 3. Ara }\left(\text { Outer } S_{N}\right)=2^{N} \cdot \frac{R B}{2} B_{N}=\frac{R}{2}\left(2^{N} B_{N}\right)
$$

$=\frac{R}{2}$ Puimetur (OUTer S_{N})
Again: $R_{N} \longrightarrow R$ Scimetu (Outer $\left.S_{N}\right) \xrightarrow[N \rightarrow \infty]{\longrightarrow} 2 \pi R$

Wert

$$
\begin{align*}
& \operatorname{Arua}\left(S_{N}\right) \leqslant \operatorname{Ara}(\text { Cine }) \leqslant \operatorname{Araa}\left(\text { outer } S_{N}\right) \tag{k}\\
& \frac{h_{N}}{2} \operatorname{Berim}\left(S_{N}\right) \leqslant \operatorname{Araa}(\text { mich }) \leqslant \frac{R}{2} \operatorname{Brimuter}\left(\text { Out } S_{N}\right) \\
& R^{2}{\stackrel{\downarrow}{ }{ }^{n \rightarrow \infty}}_{\pi} \\
& \underset{R^{2} \pi}{\downarrow_{N \rightarrow \infty}}
\end{align*}
$$

By "Squeeze Lemma": Ara $($ Chicle $)=\pi R^{2}$ (this justifies \triangle)
Obs:1. We gest the formula for sima (biddle) from the Buimuter (Ciacle).
2. We can ane this method T_{0} approximate πT_{0} any digit we want!

Q How to approximate π ?

$$
\begin{aligned}
& \text { Set } R=1 \text {. Use } h_{N}=\cos \frac{\pi}{2^{N}} \text {, } \\
& b_{N}=2 \operatorname{sen} \frac{\pi}{2^{N}} \text { mo } \operatorname{Innu} \text { Berimater } 2^{N+1} \operatorname{sen}\left(\frac{\pi}{2^{N}}\right) \\
& B_{N}=2 \tan \frac{\pi}{2^{N}} m \text { outer Primiter } 2^{N+1} \operatorname{Can}\left(\frac{\pi}{2^{N}}\right) \\
& \text { So tutu Ara }=2^{N} \operatorname{Tan}\left(\frac{\pi}{2^{N}}\right) \\
& \text { Inner Area }=h_{N} \operatorname{Irman} \operatorname{Benim}=\cos \frac{\pi}{2^{N}} \frac{2^{N+1}}{2} \sin \frac{\pi}{2^{N}}=2^{N} \sin \frac{\pi}{2^{N}} \cos \frac{\pi}{2^{N}} \\
& \overline{\bar{l}}^{2^{N-1}} \sin \left(\frac{\pi}{2 N-1}\right) \\
& \sin (2 x)=2 \sin x \cos x \text { fr } x=\frac{\pi}{2^{N}}
\end{aligned}
$$

Replace in (*): Area $\left(S_{N}\right) \leq \operatorname{Ara}$ (Circe) \leq Area (Outer S_{N})

$$
2^{N-1} \operatorname{sen} \frac{\pi}{2^{N-1}} \leq \pi \leq 2^{N} \tan \frac{\pi}{2^{N}}
$$

If the ends ague in the fist k decimal places ($1>\sim$ longe enough), then these ane also the first k digits of π.

Q Why inscribed vs cincunscribed? We'll use inner a souter apposximaties To compute anas undu the graph of a positive functions, replacing As wist untangles. This will hod naturally T_{0} "Riemann Sums" defining integrals. $\quad A=\int_{a}^{b} f(x) d x=\frac{\underset{a}{T / \lambda} d_{b}^{y}}{}=f_{(x)}$

