Lecture $X X \mid 1: \$ 6.3$ Summation notation \& some sums
\$6.4 The area under a curse. Definite Riemann integrals
Last time: we computed arras of convex regions by exhaustion (covering them with hiamgles)
TODAY: Compute aivas under curse defined by continuous functions using rectangles (Riemann Sums).
.2 notations is sums: $S<\begin{aligned} & \sum(\text { Greek } S)=\text { discrete sums } \\ & \int \text { (Integral sign) }=\text { "curtinuores } \\ & \text { sums". }\end{aligned}$
si. Summation \sum :
Notation: Given numbers a_{1}, \ldots, a_{n}, wo write $a_{1}+\cdots+a_{n}=\sum_{j=1}^{n} a_{j}$
Examples: $\sum_{j=1}^{5} j=1+2+3+4+5=15=\frac{5 \cdot 6}{2}$

$$
\begin{aligned}
& \sum_{k=2}^{7} k^{2}=4+9+16+25+36+49=139=\frac{7.8 \cdot 15}{6}-1 \\
& \begin{aligned}
\sum_{i=1}^{4}\left((-1)^{i} \frac{1}{i}\right)= & (-1)^{1} \frac{1}{1}+(-1)^{2} \frac{1}{2}+(-1)^{3} \frac{1}{3}+(-1)^{4} \frac{1}{4} \\
& =-1+\frac{1}{2}-\frac{1}{3}+\frac{1}{4}=\frac{-7}{12}
\end{aligned}
\end{aligned}
$$

GOAL: Find closed frumelas for $\sum_{i=1}^{n} i=1+2+\cdots+n$

$$
\sum_{k=1}^{n} k^{2}=1^{2}+2^{2}+\cdots+n^{2}
$$

This formulas will help us compute Riemann Sums next time.
Proposition 1: $\sum_{k=1}^{n} k=\frac{n(n+1)}{2}$
Why? This argument is due To Gauss.

\& Add "column by colleen"

$$
n+1+n+1+\cdots+n+1+n+1=(n+1) \cdot \text {.nctumns }=(n+1) n
$$

Conclude $(1+2+\cdots+(n-1)+n)+(n+(n-1)+\cdots+1)=(n+1) n$
So $2(1+2+\cdots+n)=2 \sum_{k=1}^{n} k=(n+1) n$

$$
\sum_{k=1}^{n} k=\frac{(n+1) n}{2}
$$

- This is a very elegant argument, but it won't help us with finding $\sum_{k=1}^{n} k^{2}, \sum_{k=1}^{n} k^{3}$, eke. Fr this, we give a second way of finding the primula for $\sum_{k=1}^{n} k$.
- 2 nd approach Use telescopic sums

Recall: $(k+1)^{2}=k^{2}+2 k+1$, so $(k+1)^{2}-k^{2}=2 k+1$.
Q: What happens if we sum ($*$) as we vary k between 1 and n ?
A: A lot of cancellations recur!
only summits!

$$
\begin{aligned}
\sum_{k=1}^{n}\left((k+1)^{2}-k^{2}\right) & =\left(z^{2}-1^{2}\right)^{2}+\left(k^{2}-k^{2}\right)+\cdots-\cdots+\left(k^{2}-(n-1)^{2}\right)+\left((n+1)^{2}-n^{2}\right) \\
& =(n+1)^{2}-1^{2}
\end{aligned}
$$

In general, this will lad To a telescopic sum:
frembart time

$$
\left(a_{2}-a_{1}\right)+\left(a_{3}-a_{2}\right)+\cdots+\left(a_{n+1}-a_{n}\right)=\sum_{k=1}^{n}\left(a_{k+1}-a_{k}\right)=a_{n+1}-a_{1}
$$

Now, we can sum this ria the right-handside of (*): from fins term

$$
\sum_{k=1}^{n}(2 k+1)=+\left[\begin{array}{r}
2 \cdot 1 \\
2 \cdot 2 \\
2 \cdot 3 \\
\vdots \\
2 \cdot n
\end{array}++\begin{array}{|c}
1 \\
1 \\
1 \\
1
\end{array}\right]
$$

Again, we "add column-by-column"
(1) + (2)

$$
\begin{aligned}
\text { (1) } & =2 \cdot 1+2 \cdot 2+\cdots+2 \cdot n=2(1+21++n) \\
& =2 \sum_{k=1}^{n} k \\
\text { (2) } & =\underbrace{1+1+\cdots+1}_{n \text { times }}=n
\end{aligned}
$$

So we get $\sum_{k=1}^{n}(2 k+1)=2 \sum_{k=1}^{n} k+n$
by (*) II
WHAT WE WANT!

$$
\sum_{k=1}^{n}\left((k+1)^{2}-k^{2}\right)=(n+1)^{2}-1=n^{2}+2 n+1-1=n(n+2)
$$

Conclude:

$$
\begin{aligned}
2\left(\sum_{n=1}^{n} k\right)+n & =n(n+2) \\
2\left(\sum_{k=1}^{n} k\right) & =n(n+2)-n=n(n+1) \\
\sum_{k=1}^{n} k & =\frac{n(n+1)}{2}
\end{aligned}
$$

This appwack can be generalized to compute $\sum_{k=1}^{n} k^{2}, \sum_{k=1}^{n} k^{3}$ (HOS)
Proposition 2: $\sum_{k=1}^{n} k^{2}=\frac{n(n+1)(2 n+1)}{6}$
Why? We use a different telescopic sum.

$$
\begin{equation*}
(k+1)^{3}-k^{3}=k^{3}+3 k^{2}+3 k+1-k^{3}=3 k^{2}+3 k+1 \tag{**}
\end{equation*}
$$

So $\sum_{k=1}^{n}\left((k+1)^{3}-k^{3}\right)=\left(2^{k}-1^{3}\right)+\left(k^{3}-x^{3}\right)+1 \cdot-1+\left((n+1)^{3}-x^{k}\right)=(n+1)^{3}-1^{3}=n^{3}+3 n^{2}+3 n$ $\longrightarrow \underset{\substack{\text { survivors }}}{\longrightarrow}$
On the other hand $\begin{aligned} \sum_{k=1}^{n}\left(3 k^{2}+3 k+1\right) & =3 \cdot 1^{2}+3 \cdot 1+1 \\ & +3 \cdot 2^{2}+3 \cdot 2+1\end{aligned}$
Add columns matatince

$$
\text { (1) }+(2)+(3)
$$

where (1) $=3 \cdot 1^{2}+3 \cdot 2^{2}+\cdots+3 \cdot n^{2}=3\left(1^{2}+2^{2}+\cdots+n^{2}\right)=3 \sum_{k=1}^{n} k^{2}$

$$
\begin{aligned}
& \text { (2) }=3 \cdot 1+3 \cdot 2+\cdots+3 \cdot n=3(1+2+\cdots+n)=3 \sum_{k=1}^{n} k \\
& \text { WHAT WE } \\
& =3 \frac{(n+1) x}{2} \text { (byPRop1) } \\
& \text { (3) }=\frac{1+1+\cdots+1}{n \text { times }}=n
\end{aligned}
$$

So we get $n^{3}+3 n^{2}+3 n=\sum_{k=1}^{n}\left((k+1)^{3}-k^{3}\right)=\sum_{k=1}^{n}\left(3 k^{2}+3 k+1\right)=$

$$
=(1)+(2)+(3)=3 \sum_{k=1}^{n} k^{2}+3 \underbrace{b_{y}(* *)}_{\text {WHAT WE WANT! }}+n
$$

So $3 \sum_{k=1}^{n} k^{2}=n^{3}+3 n^{2}+3 k-3 \frac{(n+1) n}{2}-n$

$$
\begin{aligned}
=n^{3}+3 n^{2}+3 n-\frac{3 n^{2}}{2} & -\frac{3 n}{2}-n \\
=\frac{1}{2}\left(2 n^{3}+3 n^{2}+n\right) & =\frac{1}{2}\left(n\left(2 n^{2}+3 n+1\right)\right) \\
& =\frac{1}{2} n((2 n+1)(n+1))
\end{aligned}
$$

Conduce $\sum_{k=1}^{n} k^{2}=\frac{n(n+1)(2 n+1)}{6}$
Proposition 3: $\sum_{k=1}^{n} k^{3}=\frac{n^{2}(n+1)^{2}}{4} \quad($ see HW5)

- General procedure To compute $\sum_{k=1}^{n} k^{s}$ fr $s=1,2,3, \ldots \ldots$.

STEP 1 Use the Binomial Thorn T_{0} write $(k+1)^{s+1}-k^{s+1}$.

$$
(k+1)^{s+1}-k^{s+1}=(s+1) k^{s}+\binom{s+1}{2} k^{s-1}+\cdots+\binom{s+1}{s} k+1
$$

STEP 2: Add up both sides:

- Left-hand side: telescopic sum: only 2 sumninos 2

$$
\begin{aligned}
\sum_{k=1}^{n}(k+1)^{s+1}-k^{s+1} & =\left(2^{s+1}-1^{s+1}\right)^{k}+\left(3^{s+1}-2^{s+1}\right)+\mid \cdots f+\left((n+1)^{s+1}-n^{s+1}\right) \\
& =(n+1)^{s+1}-1^{s+1}
\end{aligned}
$$

- Right-hand side :

$$
\begin{aligned}
& \sum_{k=1}^{n}\left((s+1) k^{s}+\binom{s+1}{2} k^{s-1}+\cdots+\binom{s+1}{s} k+1\right)=\text { anange in columns \& }
\end{aligned}
$$

So we can compute $\sum_{k=1}^{n} k^{s}$ using this approach!
§2. The area under a curse
GOAL: Given a continuous function $f:[a, b] \longrightarrow \mathbb{R}_{\geq 0}^{\text {" }}$, we want to find the area of the region S that lies under the curse $y=f(x)$ \& above the x-axis

We use 2 apperoximatums T_{0} compute Area (S)
(1) Overestimate with larger rectangles (intrap S) \leadsto Upper Riemann Sums
(2) Underestimate with small rectangles (exhaustS) \leadsto Lower Riemann Sums

Both types of rectangles will have:
-base m the x-axis of small length

- height: either a max (fr (1)) r a $\min (f r$ (2)) of f restricted To each base
STEP 1 Pick points x_{1}, \ldots, x_{n} that determine the bases of these

We wite the differences as

$$
\begin{gathered}
\Delta x_{1}=x_{1}-a \\
\Delta x_{2}=x_{2}-x_{1} \\
\vdots \\
\Delta x_{n}=x_{n}-x_{n-1} \\
\Delta x_{n+1}=b-x_{n}
\end{gathered}
$$

we assume they are all small (which mans n is going to be larges!)
To fix ideas, we can make $\Delta x_{k}=\frac{b-a}{n+1}$ for all $k=1,2, \ldots, n+1$.
STEP 2: Use these internals as the bases of sen rectangles. $n+1$ small rectangles $=r_{1}, \ldots, r_{n+1}$ \& height of $r_{k}=\min$ of $f m\left[x_{k, i}, x_{k}\right]$
n_{n+1} large rectangles $=R_{1}, \ldots, R_{n+1}$ \& height of $R_{k}=\max$ of $f m\left[x_{k}, x_{k}\right]$

LOWER SUMS

UPPER SUMS

If f is continuous $m_{k}=$ height of $r_{k}=f\left(\underline{x}_{k}^{*}\right)$ forme \underline{x}_{k}^{*} ii

$$
M_{k}=\text { height of } R_{k}=f\left(\bar{x}_{k}^{*}\right) \frac{\left[x_{k-1}, x_{k}\right]}{\left[x_{k-1}, x_{k}\right]}
$$

The existence of \underline{x}_{k}^{*} \& \bar{x}_{k}^{*} is granted by the Extreme Values Thu
STEP 3: We compare S with the aras covered by small \& large rectangles:

$$
A(r):=\sum_{k=1}^{n+1} A_{\mu_{2}}\left(r_{k}\right) \leqslant A_{r_{a}}(S) \leqslant \sum_{k=1}^{n+1} A_{r a}\left(R_{k}\right):=A(R)
$$

As we incuase n \& we decrease all Δx_{k} (bases of the rectangles $r_{k} \& R_{k}$), the heights $f\left(\underline{x}_{k}^{*}\right) \& f\left(\bar{x}_{k}^{*}\right)$ get doses To each other. This gives:
Thurem: If f is continuores, $\sum_{k=1}^{n} \operatorname{Araa}\left(r_{k}\right) \& \sum_{k=1}^{n+1} \operatorname{Arua}\left(R_{k}\right)$ have the same limit as $n \rightarrow \infty$. This is the value of Arma(S) Why? Since f is conteruares, the EVT gave us $f\left(\bar{x}_{k}^{*}\right)=M_{k}$

$$
f\left(\underline{x}_{k}^{*}\right)=m_{k} .
$$

If we pick any other point x_{k}^{*} in $\left[x_{k-1}, x_{k}\right]$, we'll have Ama $\left(r_{k}\right)=f\left(\underset{x_{k}^{*}}{*}\right) \Delta x_{k} \leqslant f\left(x_{k}^{*}\right) \Delta x_{k} \leqslant f\left(\bar{x}_{k}^{*}\right) \Delta x_{k}=\operatorname{Araa}\left(R_{k}\right)$

Call $\sum_{k=1}^{n} \underbrace{f\left(x_{k}^{*}\right) \Delta x_{k}}_{\text {aura if rectangle with }}=$ Riemann Sum
ara of rectangle with base $=\left[x_{k-1}, x_{k}\right]$

$$
\text { hight }=f\left(x_{k}^{*}\right)
$$

We get $A(r) \leq$ Riemann Sum $\leq A(R)$
Lower Riemann Sum
Upper Riemann Sum
If $\delta=\max _{k=1, \ldots n} \Delta x_{k} \longrightarrow 0$, then all $\Delta x_{k} \rightarrow 0$ \& this free $n \rightarrow \infty$.

- If we show $\lim _{\delta \rightarrow 0} A(r)=\lim _{\delta \rightarrow 0} A(R)$, then by the Squeeze

Theorem we 'll have Ama $(S)=$ this limit $=\lim _{\delta \rightarrow 0} \sum_{k=1}^{n} f\left(x_{k}^{*}\right) \Delta x_{k}$ fr $\delta=\max _{k=1, \ldots n} \Delta x_{k} \& x_{k}^{k}$ any pint in $\left[x_{k-1}^{\delta \rightarrow 0} x_{k}\right]$
(Special choices:

$$
\begin{aligned}
& x_{k}^{*}=\text { leftmost print }=x_{k-1} \\
& x_{k}^{*}=\text { rightmost print }=x_{k} \\
& x_{k}^{*}=\text { midpoint }=\frac{x_{k-1}+x_{k}}{2} \\
& b
\end{aligned}
$$

Definition: We set $\int_{a}^{b} f_{(x)} d x$ as the ana of S, viewed as a limit of Riemann Sums. We call it the definite integral.

Names: $a=$ lower limit of integration

$$
b=\text { upper } \text {. }
$$

$$
\begin{array}{r}
f(x)=\text { integrand } \\
x=\text { variable of } \\
\text { integration. }
\end{array}
$$

Q: How can we grantee ($*$) ? Continuity of f will show that $m_{k}=f\left(\underline{x}_{k}^{*}\right)$ \& $M_{k}=f\left(\bar{x}_{k}^{x}\right)$ will be close enough if Δx_{k} is sufficiently small (See Appendix A5 forditails).

Nut Time: Examples of integrable a non-integrable functions.

