Lecture XXIII: $\S 6.5$ The computation of anas as limits \& 6.7 Properties of definite integrals
§) Definite integrals:
Recall: Given a continuous function $f:[a, b] \longrightarrow \mathbb{R}_{\geqslant 0}^{\prime 2 x \geqslant 08}$, we want to find the area of the region S that lies under the curse $y=f(x)$ \& above the x-axis

We use 3 appeoximatens T_{0} compute Area (S)
(1) Orerestimate with lagger rectangles (intrap S) \leadsto Upper Riemann Sums
(2) Underestimate with small rectangles (exhaustS) $\leadsto \rightarrow$ Lower Riemann Sums
(3) Rectangles that are close To the graph \leadsto Riemann Sums

All 3 types of rectangles will have:
-base m the x-axis of small length

- height: cither a max (fr (1)), a $\min (f r$ (2)) of f restricted T_{0} each base r an arbitrary value $f(x)$ is x in each base (for (3))

STEP 1 Pick points x_{1}, \ldots, x_{n} that determine the bases of these We sat $a=x_{0}$ \& $b=x_{n+1}$ for consenicuce.
We write the differences as $\Delta x_{1}=x_{1}-a$

$$
\begin{gathered}
\Delta x_{2}=x_{2}-x_{1} \\
\vdots \\
\Delta x_{n}=x_{n}-x_{n-1} \\
\Delta x_{n+1}=b-x_{n}
\end{gathered}
$$

we assume they are all small (which mans n is going to be larger!)
To fix ideas, we can make $\Delta x_{k}=\frac{b-a}{n+1}$ for all $k=1,2, \ldots, n+1$.
STEP 2: Use these internals as the bases of on rectangles.
. $n+1$ small untangles $=r_{1}, \ldots, r_{n+1}$ \& height of $r_{k}=m_{k}=\min$ of $f m\left[x_{k, i}, x_{k}\right]$

- $n+1$ large rectangles $=R_{1}, \ldots, R_{n+1}$ \& height of $R_{k}=M_{k}=\max$ of $f m\left[x_{k} x_{k}\right]$
- $n+1$ intermediate rectangles $=P_{1}, \ldots, P_{n+1}$ \& height of $P_{k}=f\left(x_{k}^{*}\right)$ ios some choice of points $x_{1}^{*}, \ldots, x_{n+1}^{*}$ with each x_{k}^{*} in $\left[x_{k-1}, x_{k}\right]$
(Popular choices: $x_{k}^{*}=$ leftmost print $=x_{k-1}$)

$$
x_{k}^{*}=\text { right must print }=x_{k}
$$

$$
x_{k}^{*}=\text { midpoint }=\frac{x_{k-1}+x_{k}}{2}
$$

LOWER SUMS

UPPER SUMS

Sine $m_{k}=\min _{\min _{k-1} \leq x \leq x_{k}}(f(x)) \leqslant f\left(x_{k}^{*}\right) \leqslant M_{k}=\max _{\substack{x \leq x \leq x_{k} \\ k-1}}(f(x))$
We get $\underbrace{m_{k} \Delta x_{k}}_{=\text {Ama }\left(r_{k}\right)} \leqslant \underbrace{G_{\left(x_{k}^{*}\right)} \Delta x_{k}}_{=A m_{k}\left(P_{k}\right)} \leqslant \underbrace{M_{k} \Delta x_{k}}_{=A\left(\sim a\left(R_{k}\right)\right.}$
STEP 3: Summing up these aras we get 3 Riemann Sums:

Thurem: If F is continuous, then as $S=\max _{k=1, \cdots n+1} \Delta x_{k} \longrightarrow 0$, we hare n>> and $\lim _{\delta \rightarrow 0} \sum_{k=1}^{n+1} A_{n a}\left(r_{k}\right)=\lim _{\delta \rightarrow 0} \sum_{k=1}^{n+1} A_{n+1}\left(R_{k}\right)$
And by "Squeeze Thorium", this limit is also $=\lim _{\delta \rightarrow 0} \sum_{k=1}^{n+1} f\left(x_{k}^{x}\right) \Delta x_{k}$. It agnes with Ama (S) by the discussion m LecterexxII.
Definition: $\int_{a}^{b} f_{(x)} d x=$ Ama $(S)=$ definite integral (Vieured as a limit $\begin{gathered}\text { (Riemann Sums) } \\ \text { (1) }\end{gathered}$
Names: $a=$ lower limit of integration
$b=u p p e r$

$$
\begin{aligned}
& f(x)=\text { integrand } \\
& x=\text { variable of } \\
& \text { integration. }
\end{aligned}
$$

Definition: We say f is integrable see $[a, b]$ if the limit of the Riemann Sums exists and it is independent of all choices of pts $\left(x_{1}, \ldots, x_{n}\right.$ \& $x_{1}^{*}, \ldots, x_{n+1}^{*}$)

Theorem: Continuous functions are integrable.
1! Not every function is integrable (in the sense it Riemann!)
EXAMPLE: $f_{(x)}= \begin{cases}0 & \text { if } x \text { is ratimal } \\ 1 & \text { if } x \text { is inatimal } \quad \text { on }[0,1]\end{cases}$
This functim is nowhere continuous!
m Lower Riemann Sums: $m_{k}=0$ is all k so $A(r)=0$.
Upper $\overline{n+1}: \Pi_{k}=0$ so

$$
A(R)=\sum_{n=1}^{n+1} 1 \cdot \Delta x_{k}=\operatorname{limgth}([0,1])=1
$$

So f is not integrable (general Riemann Sums have no limit!)

- This led T_{0} the cuatim of other notions of integrability (by Lebesgue...) ma Real Analysis.
§2. Examples:
EXAMPLE 1: $\quad f:[0, b] \rightarrow \mathbb{R} \geqslant 0 \quad f(x)=x+1$ f is continuous, so it's integrable!

$$
\begin{aligned}
\operatorname{Arax}(S) & =\operatorname{Ama}\left(S_{1}\right)+\operatorname{Araa}\left(S_{2}\right) \\
& =\frac{b^{2}}{2}+1 . b=\frac{b^{2}+b}{2}
\end{aligned}
$$

- Pick x_{1}, \ldots, x_{n} equidistant so $x_{k}=\frac{b}{n+1} \cdot k$ fo $k=1, \ldots, n$

$$
\left(x_{0}=0 \quad, x_{n+1}=b\right)
$$

- Uru Sums
- Lowe Sums
- geranial Sums
$\left.\begin{array}{l}\text { - Low n Sums }=\underline{x}_{k}^{k}=x_{k-1} \quad m>m_{k}=f\left(\underline{x}_{k}^{*}\right)=1+x_{k-1} \\ \text { - Upper Sums }=\bar{x}_{k}^{*}=x_{k} \quad m>M_{k}=f\left(\bar{x}_{k}^{*}\right)=1+x_{k}\end{array}\right\} \begin{aligned} & \text { because } \\ & \text { is } \\ & \text { incuasing }\end{aligned}$
- General Riemann sum $f\left(x_{k}^{*}\right)=1+x_{k}^{*}$

So $\sum_{k=1}^{n+1} A_{m a}\left(r_{k}\right)=\sum_{k=1}^{n+1} m_{k} \Delta x_{k}=\sum_{k=1}^{n+1}\left(1+x_{k-1}^{\prime \frac{b}{n+1}}\right)^{\frac{b}{n+1}}=\frac{b}{n+1} \sum_{k=1}^{n+1}\left(1+\frac{b}{n+1}(k-1)\right)$

$$
\begin{aligned}
& =\frac{b}{n+1}\left(\sum_{k=1}^{n+1} 1+\sum_{k=1}^{n+1} \frac{b}{n+1}(k-1)\right)=\frac{b}{n+1}\left((n+1)+\frac{b}{n+1} \sum_{k=1}^{n+1}(k-1)\right) \\
& =\frac{b}{n+1}\left(n+1+\frac{b}{n+1}\left(D_{n}+1+2+\cdots+n\right)\right) \\
& =b+\frac{b^{2}}{(n+1)^{2}} \sum_{k=1}^{n} k=\frac{b^{\frac{1}{2}}}{=} \quad b+\frac{b^{2}}{(n+1)^{2}} \frac{(n+1) n}{2} \\
& =b+\frac{b^{2}}{2} \frac{n}{n+1}
\end{aligned}
$$

Similarly: $\sum_{k=1}^{n+1} \operatorname{Ama}\left(R_{k}\right)=\sum_{k=1}^{n+1}\left(1+x_{k}\right) \frac{b}{n+1}=\frac{b(n+1)}{n+1}+\sum_{k=1}^{n+1} \frac{b}{n+1} x_{k}$

$$
=b+\frac{b^{2}}{n+1} \frac{(n+1)(n+2)}{2}=b+\frac{b^{2}}{2} \frac{n+2}{n+1} .
$$

Haring $\delta=\frac{b}{n+1} \longrightarrow 0$ frees $n \rightarrow \infty$
So $\quad \lim _{\delta \rightarrow 0} \sum_{k=1}^{n+1} \operatorname{Ana}\left(r_{k}\right)=\lim _{\delta \rightarrow 0}\left(b+\frac{b^{2}}{2} \frac{n}{n+1}\right)=\lim _{n \rightarrow \infty} b+\frac{b^{2}}{2} \frac{n}{n+1}$

$$
=b+\frac{b^{2}}{2}
$$

$$
\lim _{\delta \rightarrow 0} \sum_{k=1}^{n+1} \operatorname{Ana}\left(R_{k}\right)=\lim _{\delta \rightarrow 0}\left(b+\frac{b^{2}}{2} \frac{n+2}{n+1}\right)=\lim _{n \rightarrow \infty} b+\frac{b^{2}}{2} \frac{n+1}{2 n+2}
$$

So $\quad \int_{0}^{b}(x+1) d x=b+\frac{b^{2}}{2}=\lim _{n \rightarrow \infty} \sum_{k=1}^{n}\left(1+x_{k}^{*}\right) \frac{b}{n}$

$$
=b+\frac{b^{2}}{2}
$$

\triangle This calculation doesn't show that the choice of prints dessit matter, bet this pact follows fun the T kurus (we know F is integrable!)

EXAMPLE Z: $f:[0, b] \longrightarrow \mathbb{R}^{2} \quad f(x)=x^{2} \quad$ Ama $=$? ($F_{\text {is integrable!.) }}$

. Pick x_{1}, \ldots, x_{n} equidistant

$$
x_{k}=\frac{b}{n+1} \quad, 0=x_{0}, b=x_{n+1}
$$

- F is incuasing so $\underline{x}_{k}^{k}=x_{k-1}=\frac{b(k-1)}{n+1}$

$$
\bar{x}_{k}^{*}=x_{k}=\frac{b k}{n+1}
$$

Loon Sums : $\sum_{k=1}^{n+1}$ Aura $\left(r_{k}\right)=\sum_{n=1}^{n+1}\left(\underline{x}_{k}^{*}\right)^{2} \frac{b}{n+1}=\sum_{k=1}^{n+1}\left(\frac{b(k-1)}{n+1}\right)^{2} \frac{b}{n+1}$

$$
\begin{aligned}
& =\sum_{k=1}^{n+1} \frac{b^{3}}{(n+1)^{3}} \frac{(k-1)^{2}=\frac{b^{3}}{(n+1)^{3}} \sum_{k=1}^{n+1}(k-1)^{2}=\frac{b^{3}}{(n+1)^{3}}\left(0^{2}+1^{2}+2^{2}+\cdots+n^{2}\right)}{=\frac{b^{3}}{(n+1)^{3}} \sum_{k=1}^{n} k^{2}=\frac{b^{3}}{(n+1)^{3}} \frac{n(n+1)(2 n+1)}{6}=\frac{b^{3}}{6} \frac{n}{n+1} \frac{2 n+1}{n+1}}
\end{aligned}
$$

Lecture 2z-P Mop 2
Upper Sums $\sum_{k=1}^{n+1}$ Ama $\left(R_{k}\right)=\sum_{k=1}^{n+1}\left(\bar{x}_{k}^{*}\right)^{2} \frac{b}{n+1}=\sum_{k=1}^{n+1}\left(\frac{b k}{n+1}\right)^{2} \frac{b}{n+1}=$

Both sums have the same limit as $n \rightarrow \infty \quad\left(\delta=\frac{b}{n+1} \rightarrow 0\right)$
This limit is $\frac{b^{3}}{6} \cdot z=\frac{b^{3}}{3}$
Condusin : Ama $(S)=\int_{0}^{b} x^{2} d x=\frac{b^{3}}{3}=\lim _{n \rightarrow \infty} \sum_{k=1}^{n+1}\left(x_{k}^{*}\right)^{2} \frac{b}{n+1}$
fo any choice of $x_{1}^{*}, \ldots, x_{n+1}^{*}$ with $\frac{b(k-1)}{n+1} \leqslant x_{k}^{*} \leqslant \frac{b k}{n+1}$ p $k=1, \ldots, n+1$
S3 General Properties:
(1) If $a \leq b$, then $\int_{b}^{a} f(x) d x=-\int_{a}^{b} f(x) d x$. (so $\int_{a}^{a} f(x) d x=0$)
Reason : Under of x_{1}, \ldots, x_{n} is descending!

$$
\Delta x_{k}=x_{k+1}-x_{k}<0
$$

L opposite sign to the incumeat going the a to b.
$f\left(x_{k}^{*}\right)$ is the same for both riders
(2) Additivity I: If $a<c<b: \quad \int_{a}^{b} f(x) d x=\int_{a}^{c} f(x) d x+\int_{c}^{b} f(x) d x$
(3) Scalar Multiplication: $\int_{a}^{b} c f_{(x)} d x=c \int_{a}^{b} f_{(x)} d x$

Reason: $(c f)_{\left(x_{k}^{*}\right)}=f^{f}\left(x_{k}^{x}\right)$ \& use Limit Laws.
(4) Additivity II: $\int_{a}^{b}(f(x)+\rho(x)) d x=\int_{a}^{b} f_{(x)} d x+\int_{a}^{b} \rho(x) d x$ if both $\mathrm{t} \& \mathrm{~g}$ ane contrucores.

Why? Again, by Limit Laws $+(f+g)_{\left(x_{k}^{*}\right)}=f_{\left(x_{k}^{*}\right)}+g_{\left(x_{k}^{k}\right)}$

1) Nerd to work with general Riemann Sums since

Upper R..S. fo f Upper.Sfog \neq Upper R.S for $(f+g)$
Lower \ldots Lowe \ldots Lower

