SI Algebraic VS. apprettic areas
For
$$F_{1}[a, 5] \rightarrow IR_{00}$$
 continuous, we define
. Geometric Anna = area of the regin S enclosed by
the x-axis and the paph off.
= $\int_{0}^{\infty} \frac{f_{1}(x)}{x} dx$
= $-Anna(IR)$
 $F_{1}(x) dx$
= $\int_{0}^{\infty} \frac{f_{1}(x)}{x} dx$
= $-\int_{0}^{\infty} \frac{f_{1}(x)}{x} dx$
If $F_{1}(x) dx$ = $-Anna(S) = -\int_{0}^{1} (-f_{1}) dx$
= $\int_{0}^{\infty} \frac{f_{1}(x)}{x} dx$
If $F_{1}(x) dx$ = ungature on $[a, 5]$, the sign of the integral of $F_{1}(x)$
we preditermined
Definition: $\int_{0}^{\infty} \frac{f_{1}(x)}{x} dx = 4$ Algebraic $(r, 5r)$ and $Anna$

Q: Ensection to arras under a aurre?

STEP 2: The ana bounded by the x-axis and the restriction of
F to
$$[a_{k-1}, a_k]$$
 gives us $A_{k-1} = \int_{a_k}^{a_k} IF_{(X)} dx$
 $sim_{A_k}(F) = \begin{cases} + & iF \quad F \ge 0 \quad m[a_{k-1}, a_k] \\ - & iF \quad F \ge 0 \quad m[a_{k-1}, a_k] \end{cases}$
Geometric Anna $= \sum_{k=1}^{S} A_k = \int_{a_k}^{S} IF_{(X)} dx$
 $signed A ua = \sum_{k=1}^{S} sign_{A_k}(F) \quad A_k = \sum_{k=1}^{S} ua_{A_k}(f) \quad JF_{(X)} dx$
 $= \sum_{k=1}^{I} \int_{a_{k-1}}^{u} sugn_{A_k}(F) \quad JF_{(X)} dx = \int_{a_k}^{a_{k-1}} F_{(X)} dx$
(Netter: here or one using a general resin of the Additive Property I
From Lecture 2s)
The our example: Geometric Anna = A_1 + A_2 + A_3 + A_4 + A_5
Signed A ua = A_1 - A_2 + A_3 - A_4 + A_5.
Example, $F_{(X,T)} \ge x - 1 \quad m[0,2]$
Zeron of F_1 ruly 1 at $a_1 = 1$
 $A_1 = \frac{1 - 1}{2} = A_2$
Geometric Anna = A_1 + A_2 = -\frac{1}{2} + \frac{1}{2} = 0.
(Insequence: The properties for definite integrals that we saw in Lecture 2s
when $F_{(X,T)} \ge 0$ are time for any continuous function.

<u>\$2. Fundamental Theorem of Calculus:</u> • Fundamental = it relates differential & integral calculus. • This result will allow as To compute integrals without using Riemann Sums!

Thurum: Assume
$$F: [a,b] \longrightarrow \mathbb{R}$$
 is entimuous, and let F_{1xy} be
Any antideviative of F (necall: we used the notation $F=\int_{ry} f_{xy} dx$)
Then, the signed one between the peaks of F and the x-axis is:

$$\int_{a}^{b} F(x) dx = F(b) - F(a) =: F(x) \Big|_{a}^{b}$$

$$\frac{Example (hast time)}{\int_{a}^{b} (1+x) dx} = \frac{b+b^{2}}{2}$$

$$E = F_{1x} = x + \frac{x^{2}}{2}$$
 is an antideviative of $f_{1x} = x + \frac{x^{2}}{2}$ is an antideviative of $f_{1x} = \frac{b+b^{2}}{2}$.
Example (hast time) Using Riemann Sums we saw

$$\int_{a}^{b} (1+x) dx = b + \frac{b^{2}}{2}$$

$$E = F_{1x} = x + \frac{x^{2}}{2}$$
 is an antideviative of $f_{1x} = \frac{x^{2}}{2} - x$, $F(a)=0$ is $F(a)=2-2=0$.
Example $(bast time)$ $F(x)=x^{2}$ is an antideviative of $F(a)=2-2=0$.
Example $: F(x)=x^{2}$ is an antideviative of $F(a)=0$, $F(a)=\frac{b^{2}}{3} = \int_{a}^{b} x^{2} dx$.
(here $: F(x) = \frac{x^{2}}{3}$ is an antideviative of $f_{1x} = x^{2}$, $F(a)=0$, $F(b)=\frac{b^{2}}{3}$.
Reconcised and of the Fundamental Thurum of Calculues (Leibning - Newton).
The simplicity, we assume $f = 0$. Otherwise, we work with piece where
the sign is constant x with base $\int_{a}^{b} F(x) = \int_{a}^{b} F(x) dx = (F(b) - F(a)) + (F(b) - F(a))$.
In general: Mi contributions from the genes of f will cancel suit.)
The $f: (a,b) \to \mathbb{R}_{>0}$ we define the
(signed) area Function $A:[a,b] \to \mathbb{R}_{>0}$ we define the
(signed) area Function $A:[a,b] \to \mathbb{R}_{>0}$ we define the
(signed) area Function $A:[a,b] \to \mathbb{R}_{>0}$ we define the
(signed) area Function $A:[a,b] \to \mathbb{R}_{>0}$ we define the

Note that the variable of integration is now called t, to evoid enformines.
We expect
$$A(x)$$
 to be a vice smooth hundrin when f is entrueous
We cutify this is true by computing $\frac{dA}{dx}$ in the method of increments
 $\frac{dA}{dx} = \lim_{\Delta x \to 0} \frac{A(x+\Delta x) - A(x)}{\Delta x} = \lim_{\Delta x \to 0} \frac{Ama(S)}{\Delta x}$
We want to show: $\frac{dA}{dx} = F(x)$
STEP 1. We want to show that Ama(S) is small if Δx is small.
How? Use max a min entimates
 $0 \le m = \min \{f(t)\}$ for $tin[x, x+\Delta x]\}$
 $M = 0 \le M = \max k\} = \frac{1}{\Delta x}$
 $M = \sum_{x \to 0} M = \sum_{x \to 0} M = \frac{1}{\Delta x}$
 $\sum_{x \to 0} M = F(t_{max}) + \frac{1}{\Delta x}$
 $\sum_{x \to 0} M = F(t_{max}) + \frac{1}{\Delta x} + \frac{1}{\Delta x}$
 $\lim_{x \to \infty} m = F(t_{min}) = M = F(t_{max}) + \frac{1}{\Delta x} +$

that Ana (S) =
$$F(x^{x})$$
 for sime x^{x} in this interval
Now: x^{x} is also in $(x, x+\Delta x] = f$ is calinuses, so
again we see Anna (S) = Anna (x) = $F(x)$
Since $x^{x} \xrightarrow{\Delta x \to 0} x$.
STEP 3: By definition $A(x) = \int_{0}^{x} F(f) dt$ is an autiduivative
for $F(x)$. By uniqueness, we can find a constant C with
 $A(x) = F(x) + C$ for all x in $(a, b]$.
We can find C by enduating at constant x 's.
 $0 = \int_{0}^{x} F(f) dt = A(a) = F(a) + C$ so $C = -F(a)$
We conclude $A(x) = F(x) - F(a)$ for all x .
Evaluating at $x = b$ gives $A(b) = \int_{0}^{17} f(x) dx = F(b) - F(a)$.
 $Q:$ Why is the choice of autiduivative not important?
 $A:$ Any other choice will differ from $F(x)$ by a constant B.
 $IF G(x) = F(x) + B$, thun $G(b) - G(a) = (F(b) + B) - (F(a) + B) = F(b) - F(a)$
 $\frac{Nxt}{\Delta x}$ is $\frac{Nx}{\Delta x}$ is $\frac{Nx}{\Delta x}$ is $\frac{Nx}{\Delta x} = \frac{N}{\Delta x$