
 
LectureXXIV 6.7 Algebraic vs GeometricAreas

6.6 TheFundamentalTheoremof Calculus

1 Algebraic us geometric areas
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STEP 2 The area bounded by the x axis andthe restrictionof
f to Cary an gives us An It thx dx
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Notice here we are using a general versionof the AdditiveProperty I
FL ecture 23
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Consequence The properties fordefinite integrals thatwe saw n lecture23

when Lex 0 are true forany continuous function

2 Fundamental Theoremof Calculus

Fundamental it relates differential integral calculus

This result will allow us to compute integrals withoutusingRiemannsums



Theorem Assume I a b R is continuous and let Fix be
ANY antiderivative of f recall we used thenotationFf Lex dx
Then the signed area between thegraphofhand the x axis is

fix d x F b Fia Fox

Examples lasttime Using RiemannSums we saw
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Signed And 0 x 1 dx Fox E X Fco o F z 2 2 0

Example fix X m lo s left as an exercise lasttime

UsingRiemann Sums we get Ana J I x'd x

Check Fix is an antiderivativeof fix X Flo O Fib

Proof idea of theFundamentalTheoremofCalculus Leibniz Newton

For simplicity we assume f 0 Otherwise we workwith pieces where

the sign is constant use additivity Fr example it f hasonly me
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In general All contributions from thezerosoff will cancel out I
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Note that the variable of integration is now called t toavoid contusions

We expect Aix to be a nice smooth function when his continuous

We certify this is true by computing date via the methodofincrements
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STEP I We want to show that Annals is small it DX is small

How Use max min estimates
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STEP 2 Since f is continuous the Extreme Value Theorem
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Then by the Squeeze Throum applied to a we get
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Alternative argument Use the Intermediate ValueTheoremfor f
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that Among f xx for some x in this internal

Now x is also in X X Ax f is antenuous so

again we see gley Angst ales text fix
since x'Fox
STEP 3 By definition A x f f t dt is an antiderivative

for tix By uniqueness we can find a constant C with

Aix Fox C for all x in La b

We can find C by evaluating at convenient x's
O E fit dt Aca Fca C so C Fia

We conclude A ex Fix Fca for all x
Evaluating at x b gives Alb fix dx Fib Ta

Q Why is the choice of antiderivative notimportant

I Any other choice will differ fromFox by a constant B
If Gex Fix B then G b Gia FL IB Fca tB F b Fca

Nd The same proof works no matter the sign of h justreplace

Angf by signedyArgI
Consequences It f is continuous I fit dt Aix fix
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