Lecture XXVI: §7.2 The area between two curses §7.3 Volumes: The Disk Methurl
§1 The area between two curses with multiple crossings.

- Germitic Ana $=\int_{a}^{b}|g(x)-f(x)| d x=A_{1}+A_{2}+A_{3}+A_{4}$
- Signed Ara $=\int_{a}^{b}(f(x)-g(x)) d x=-A_{1}-A_{2}+A_{3}-A_{4}$

Q: How To compute $A_{1}, A_{2}, A_{3}, A_{4}$?
STEP 1: Find all crossings of the 2 curses between a \& b : $(f(x)=g(x)$ with $a \leqslant x \leqslant b) \sim a_{1}, a_{2}, a_{3}$ in the picture.
STEP 2: $A_{1}=\int_{a}^{a_{1}} g_{(x)}-f_{(x)} d x$

$$
\left(\underset{(x)}{\geqslant} f_{(x)} \text { in }[a, a,]\right)
$$

$$
A_{2}=\int_{a_{1}}^{a_{2}} g(x)-f(x) d x
$$

$$
\left(g \underset{(x)}{\geqslant} f(x) \text { in }\left[a_{1}, a_{2}\right]\right)
$$

$$
A_{3}=\int_{a_{2}}^{a_{3}} f(x)-S(x) d x
$$

$$
\left(g_{(x)} \leq f(x) \text { in }\left[a_{2}, a_{3}\right]\right)
$$

$$
A_{4}=\int_{a_{3}}^{b^{2}} g(x)-f(x) d x \quad\left(s(x) \geqslant f_{(x)} \text { in }\left[a_{s}, b\right]\right)
$$

Need T_{0} compare g \& f in between crossings T_{0} decide if $f(x)-f(x) \mid=g(x)-f(x) \quad \pi \quad f(x)-g(x)$.

- We compute the integrals via FTC.

Example: Find the ara between $y=2 \cos x$ \& $y=2 \sin 2 x$ on $[0, \pi / 2]^{L<\varepsilon}$

- $f(x)=2 \cos x$
\& $\quad g(x)=2 \sin 2 x$
- Compute intersections:

$$
\begin{aligned}
& f(x)=\rho(x) \\
& 2 \cos x=2 \sin 2 x \\
& \cos x=\sin 2 x=2 \cos x \sin x \\
& \cos x(1-2 \sin x)=0
\end{aligned}
$$

$\rightarrow \cos x=0$

$$
x=\frac{\pi}{2}
$$

$\leadsto 2$ pts $a_{1}=\frac{\pi}{2}$

$$
a_{2}=\frac{\pi}{6}
$$

- Ara $=A_{1}+A_{2}=\frac{1}{2}+\frac{1}{2}=1$ vs •Sigred Ara $=A_{1}-A_{2}=0$
- Computer functives: $f(0)=2$ vs $g(0)=0$ ~ $f(x) \geqslant \rho(x)$

$$
\text { - } f\left(\frac{\pi}{4}\right)=2 \frac{\sqrt{2}}{2}=\sqrt{2} \text { vs } g\left(\frac{\pi}{4}\right)=2 \text { ms }
$$ on $\left[0, \frac{\pi}{6}\right]$

$$
\begin{aligned}
& A_{1}=\int_{0}^{\pi / 6} f_{(x)}^{\pi / 3}-\delta(x) d x=\int_{0}^{\pi / 6}(2 \cos x-2 \operatorname{sen} 2 x) d x= \\
& =\left.2 \sin x\right|_{0} ^{\pi / 6}-\int_{0}^{\pi / 3} \sin u d u=2 \frac{1}{2}+\left.\cos u\right|_{0} ^{\pi / 3}=1+\frac{1}{2}-1=\frac{1}{2} \\
& L_{\rightarrow} \begin{cases}u=2 x & x=0 \quad \leadsto \rightarrow u=0 \\
d u=2 d x & x=\frac{\pi}{6} \leadsto u=\frac{\pi}{3}\end{cases} \\
& A_{2}=\int_{\pi / 6}^{\pi / 2} f(x)-f(x) d x=\int_{\pi / 6}^{\pi / 2}(2 \sin 2 x-2 \cos x) d x=\int_{\downarrow}^{\pi / 3} \operatorname{sen} u d u-\left.2 \sin x\right|_{\pi / 6} ^{\pi / 2} \\
& u=2 x^{3} \quad x=\frac{\pi}{6} \quad m>u=\frac{\pi}{3} \\
& =\left(-\left.\cos u\right|_{\frac{\pi}{3}} ^{\pi}-2\left(1-\frac{1}{2}\right)=-\cos \pi-\left(-\cos \frac{\pi}{3}\right)-1=-(-1)+\frac{1}{2}-1=\frac{1}{2}\right.
\end{aligned}
$$

s 2 Solid of revolution

- INPUT: A positive \& continuous function f on $[a, b] \quad\left(E_{x} f_{(x)}=x^{2}\right)$ - We notate the graph absent the x-axis to get a solid of revolution R Q What is the volume of R ?

cos section at x : disk if radius $f(x)$
Ana of the section $=\pi\left(f_{(x)}\right)^{2}$
Element of volume: Ara nos section $\cdot d x$

$$
\left.\prod_{\tilde{\Delta x}=d x}\right\} f(x) \quad d V=\pi(f(x))^{2} d x
$$

We compute Vol(R) by corning R with these vertical slices (coss sectius) \& letting $d x \rightarrow 0$. The Riemann Sums give:

$$
\begin{equation*}
\operatorname{Vol}(R)=\int_{a}^{b} d V=\int_{a}^{b} \pi\left(f_{(x)}\right)^{2} d x \tag{x}
\end{equation*}
$$

EXAMPLE: $f(x)=x^{2}$ m $[0,1] m \operatorname{Vr}(R)=\int_{0}^{1} \pi x^{4} d x=\left.\frac{\pi x^{5}}{5}\right|_{0} ^{1}=\frac{\pi}{5}$
Q: Why does (k) work? A Define $\operatorname{Vrl}\left(R_{x}\right)=$ where or^{2}
 the solid if revolution between $a \& x$. So $\operatorname{Vrl}\left(R_{x}\right)^{\prime}=\lim _{\Delta x \rightarrow 0} \frac{\operatorname{Vrl}\left(R_{x+\Delta_{x}}\right)-V_{r}\left(R_{x}\right)}{\Delta x}$

$$
P=\left.\sqrt[x]{\sqrt[x]{x+\Delta x}}\right|_{\Delta x \rightarrow 0} \frac{\operatorname{Vgl}(P)}{\Delta x}
$$

We undux-and reestimate $V r l(P)_{\Delta x}$ by 2 cylinders

underestitate

$$
m=\min _{x \leqslant c \leqslant x+\Delta x} f(c)
$$

$$
\begin{aligned}
& A_{\text {ma }} 0=\pi m^{2} \\
& V_{g} l=\pi m^{2} \Delta x
\end{aligned}
$$

$$
\begin{aligned}
& \text { Ama } 0=\pi m^{2} \\
& V_{T} l=\pi m^{2} \Delta x
\end{aligned}
$$

overestimate

$$
M=\max _{x \leq c \leq x+\Delta x} f(c)
$$

So $V_{r}\left(\right.$ inner cylimder $\leq V_{r} l(P) \leqslant V_{r} l($ outer cylinder)

$$
\begin{aligned}
\left(\pi m^{2}\right) \Delta x & \leqslant \operatorname{Vg}(P) \leqslant\left(\pi M^{2}\right) \Delta x \\
\pi m^{2} & \leqslant \frac{V l(P)}{\Delta x} \leqslant M^{2}
\end{aligned}
$$

Since f is continuores $\pi m^{2}, \pi M^{2} \underset{\Delta x \rightarrow 0}{\longrightarrow} \pi f^{2}(x)$
So the Seqeize Thurum ensences $\lim _{\Delta x \rightarrow 0} \frac{V_{0} l(P)}{\Delta x}=\pi f^{2}(x)$
Conclusim: $\operatorname{Vg}\left(R_{x}\right)^{\prime}=\pi f_{(x)}^{2}$
Then, by FTC: $\quad \operatorname{Vol}(R)=\int_{x}^{x} \pi f^{2}(t) d t+C$
We deturmine C by evaluating at $x=a$.

$$
V a l\left(R_{a}\right)=0=0+C \text { so } C=0 \text {. }
$$

Conduch: $\quad V \rho(R)=\operatorname{Vol}\left(R_{b}\right)=\int_{a}^{b} \pi f^{2}(t) d t$
Remark: We can use this idea To ucoser wolemes of sme familiar solids of usolution (spheres, coves, uglinders)
(1) Sphere of radius a: Rstate a half-circle of radius a
 Q: What's $f(x)$? $x^{2}+y^{2}=a^{2}$ So $y=\sqrt{a^{2}-x^{2}}$

$$
f(x)=\sqrt{a^{2}-x^{2}}
$$

Endpints: $-a$ \& a

$$
\text { Vof } \left.(\text { sphere })=\int_{-a}^{a} \pi\left(a^{2}-x^{2}\right) d x=\left.\pi\left(a^{2} x-\frac{x^{3}}{3}\right)\right|_{-a} ^{a}\right)
$$

$$
=\pi\left(a^{3}-\frac{a^{3}}{3}-\left(-a^{3}+\frac{a^{3}}{3}\right)\right)=\frac{4 \pi a^{3}}{3}
$$

(2) Cone of height $=h$ a vadius of base $=r$: Rotate a segment

- Functim $y=m x+b$ with $y(0)=0$

$$
y(h)=r
$$

$\leadsto y=f_{(x)}=\frac{r}{h} x$

- Endprinto: $0 \& h$

$$
\left.\begin{array}{rl}
d V & =\pi f(x)^{2} d x
\end{array}\right)=\pi \frac{r^{2}}{h^{2}} x^{2} d x \quad V_{0}^{h}(\text { Cone })=\int_{0}^{h} \pi \frac{r^{2}}{h^{2}} x^{2} d x=\left.\frac{\pi r^{2}}{h^{2}} \frac{x^{3}}{3}\right|_{0} ^{h}=\frac{\pi r^{2} h^{3}}{3 h^{2}}=\frac{\pi r^{2} h}{3}
$$

(3) Cylinder of radies r \& height h : wotate a horizntal seguent

(1) We used it to pore (*).

Function $\quad f(x)=r$
Endpsints: $0 \& h$

$$
d V=\pi r^{2} d x \leadsto V a l=\int_{0}^{h} \pi r^{2} d x=\pi r^{2} h
$$

