Lecture XXVII: $\$ 7.3$ Volumes via moving slices a the Washer met hod ${ }^{2 r}$
§7.4: Volumes: The Method of cylindrical shells
Last time: We described solids of uvolutim \& computed their volumes ria the disk method

$$
V=\int_{a}^{b} \pi(f(x))^{2} d x
$$

§1 Washer Method:

- INPUT: 2 prsitise \& continuores functions f, g on $[a, b]$ with $g(x) \leqslant f(x)$
- Rotate both graphs \& get a surface of revolution R

- Coss section $=$ washer $=$ difference of z disks of radii $f(x)$ \& $g(x)$

$$
\begin{aligned}
& d V=\text { Anal Washer) } d x=\pi\left(f_{(x)}^{2}-g^{2}(x)\right) d x \\
& \leadsto \operatorname{Vr}(R)=\int_{a}^{b} \pi\left(f_{(x)}^{2}-f^{2}(x)\right) d x
\end{aligned}
$$

Example

$$
f(x)=1 \quad f(x)=\sqrt{\cos x}
$$

with $0 \leq x \leqslant \frac{\pi}{2}$

$$
d V=\pi(1-\cos x) d x
$$

$$
\text { Vol }=\int_{0}^{\pi / 2} \pi(1-\cos x) d x=
$$

$$
=\pi\left(\frac{\pi}{2}-1\right)-\pi(0-0)=\frac{\pi(\pi-2)}{2}
$$

\$2. Volumes via moving slices
Next: we want to mimic the volume computation techniques for solids of resolution for more general solids. We will compute volumes by analysing the arras of convenient slices (either vertical or horizontal)

x-slices $=x$-coss secterns have an ara, called $A(x)$

$$
\text { - } d V=A(x) d x
$$

(think of a cylinder with width dx and base the coss section)

$$
\text { - } V o l=\int_{a}^{b} d V=\int_{a}^{b} A(x) d x
$$

Q Why is this fromula valid?
The idea is the same as for solids of resolution.
We define $R_{x}=$ solid between a \& x

$$
\text { So } \frac{d}{d x} \operatorname{Vol}\left(R_{x}\right)=\lim _{\Delta x \rightarrow 0} \frac{\operatorname{Vrl}\left(R_{x+\Delta x}\right)-\operatorname{Vr}\left(R_{x}\right)}{\Delta x}
$$

We use antimuity of $A(x)$ To show this limit is $A(x)$ (the regin between $R_{x+\Delta x}$ \& R_{x} can be under a grecestimated with cylinders. If width Δx \& Volume $=\left(\operatorname{mox}_{x<t<x+\Delta x} \Delta_{x}(t)\right) \cdot \Delta x$

$$
\left.\pi=\left(\min _{x<t<x+\Delta x} A(t)\right) \Delta x \quad\right)
$$

A. Hardest part is the determine if x - or y-slices are better for computing.

Problem:

Pick a cylinder with base a circle of radius a \& slice it with a plane though the curter of the
base at a 45° angle. Compute the volumes between the plane s the base
Solution: We look at the coss-sectins in the x-dinectin

Coos-sections $=$ night - isosceles Δ
Side length $r(x)$, \& we use

So $A(x)=\frac{r(x) \cdot r(x)}{2}=\frac{r(x)^{2}}{2}$

$$
\begin{aligned}
\text { Volume } & =\int_{-a}^{a} A_{(x)} d x=\int_{-a}^{a} \frac{\left(a^{2}-x^{2}\right)}{2} d x \\
& =\frac{1}{2}\left(a^{2} x-\left.\frac{x^{3}-x^{2}}{2}\right|_{-a} ^{a}\right)=\frac{1}{2}\left(\left(a^{3}-\frac{a^{3}}{3}\right)-\left(-a^{3}+\frac{a^{3}}{3}\right)\right)=\frac{2}{3} a^{3} .
\end{aligned}
$$

Q What if we use y-slices?

$$
\begin{aligned}
& y \text {-slices }=m \text { tangles } \\
& \left\{\begin{array}{l}
\text { height }=y \quad\left(\text { plane is indined } 45^{\circ}\right) \\
\text { base }=b(y)
\end{array}\right.
\end{aligned}
$$

We use $\frac{y-s^{b(y) / 2}}{a}$ to determine ${ }^{b}(y)$
So $a^{2}=y^{2}+\left(\frac{b(y)}{2}\right)^{2}$ gives

$$
b(y)=\sqrt{4\left(a^{2}-y^{2}\right)}=2 \sqrt{a^{2}-y^{2}}
$$

Next

$$
\begin{aligned}
& V x=\int_{0}^{a} A(y) d y=\int_{0}^{a} 2 \sqrt{a^{2}-y^{2}} \cdot y d y \\
&=\int_{a^{2}}^{0} 2 \sqrt{u}\left(-\frac{d u}{2}\right)=\int_{0}^{a^{2}} \sqrt{u} \sqrt{u} d u=\left.\frac{2}{3} u^{3 / 2}\right|_{0} ^{a^{2}}= \\
& u=a^{2}-y^{2} \mid \\
& d u=-2 y d y=u=a^{2} \quad=\frac{2}{3} a^{3}
\end{aligned}
$$

As expected, we get the same value!
\$3. Cylindrical Stull s:

- InPUT, A decreasing \& continues function $f:[a, b] \longrightarrow \mathbb{R}$ with $a>0$ - Next, we rotate the graph about the y-axis to get a solid of revolution R
Q: What is the volume of R ?

$$
\begin{aligned}
& f(b)=m=\min _{a \leqslant c \leqslant b} f(c) \\
& f(a)=M=\max _{a \leqslant \leqslant \leqslant b} f(c)
\end{aligned}
$$

Method: Oruestimate Vol(R) by corning R with cylindrical shells Cylindrical shell $=$ Cylinder $1-$ Cylinder 2
Cylinder $1=$ uslinder of hight $h(x)$ \& radius $x+\Delta x=x+d x$ Cylinder $2=$

We unfold the shall \& get
.

So $d V=2 \pi x h(x) d x \quad m \quad V_{0} f(R)=\int_{a}^{b} d V=\int_{a}^{b} 2 \pi x\left(f_{(x)}-m\right) d x$

Q What do the coos-sectins of these shells look like?

Thy look like concentric circles of radii $x \& x+d x$
Outer cincementerence $=2 \pi(x+d x)$
True $\longrightarrow=2 \pi x$
\$4Examples:
(1) Sphene of radius 5

To use cylindricall shells, we compute the Volume of the norther hemisphere

The top half cones from

- Use $h_{(x)}^{2}+x^{2}=r^{2} \quad$ to get $\quad h(x)=\sqrt{r^{2}-x^{2}}$
- $d V=2 \pi x h(x) d x=2 \pi x \sqrt{r^{2}-x^{2}} d x$

So $V_{0} l(R)=2 \int_{0}^{r} 2 \pi x \sqrt{r^{2}-x^{2}} d x=4 \pi \int_{0}^{r} x \sqrt{r^{2}-x^{2}} d x$

$$
\begin{aligned}
& \vec{\rightarrow}=4 \pi \int_{r^{2}}^{0} \sqrt{u} \frac{d u}{-2}=2 \pi \int_{0}^{0} u^{r^{2}} u^{1 / 2} d u \\
& \left\{\begin{array}{l}
x=r^{2}-x^{2} \\
d u=-2 x d x \quad x=r m u=r^{2} \\
x=r m=0
\end{array}=\left.2 \pi \frac{2 u^{3 / 2}}{3}\right|_{0} ^{r^{2}}=\frac{4 \pi r^{3}}{3}\right.
\end{aligned}
$$

(2) Cone of height h s radius r

(as expected!)

$f:[0, r] \rightarrow \mathbb{R}$
linear with $f(0)=h$
$\& f(r)=0 m f(x)=\frac{h}{r}(r-x)=\frac{-h}{r} x+h$

We continue that f is deceasing l

$$
d V=2 \pi \times f_{(x)} d x=2 \pi x\left(\frac{-h}{r} x+h\right)_{r} d x
$$

So $\operatorname{Vol}=\int_{0}^{r} 2 \pi x\left(-\frac{h}{r} x+h\right) d x=\int_{0}^{r}\left(-2 \pi \frac{h}{r} x^{2}+2 \pi h x\right) d x$

$$
=-2 \pi \frac{h}{r} \int_{0}^{r} x^{2} d x+2 \pi h \int_{0}^{0} x d x
$$

$$
=-\left.2 \pi \frac{h}{r} \frac{x^{3}}{3}\right|_{0} ^{r}+\left.2 \pi h \frac{x^{2}}{2}\right|_{0} ^{r}=-\frac{2}{3} \pi \frac{h}{r} r^{3}+\pi h r^{2}
$$

$$
=-\frac{2}{3} \pi h r^{2}+\pi h r^{2}=\frac{\pi h r^{2}}{3}
$$

Q: What if we have 2 bounding ouse $y=f(x) \& y=g(x)$ with f go continues in $[a, b]$ \& $f \geqslant g$

So $d V=2 \pi x h(x) d x$ by cylindu shells

$$
V r(R)=\int_{a}^{b} 2 \pi x(f(x)-g(x)) d x
$$

[Typically, $a=0$]
Alternative: Use disk method in top pact \& bytom part separately in the y-direction (© we need 5 express x in terms of y, which may not be possible, it depends on way $f_{(x)} \& f(x)$ are)

