•

§ 2. Volumes via moving slices

Next: we want to mimic the volume computation techniques for solids of revolution for more general solids. We will compute volumes by analyzing the areas of convenient slices (either restical r horizontal)

x - slices = x - cross rectumeshave an ana, called A(x)

•
$$dV = A(x) dx$$

(think of a cylinder with width dx
and base the coss section)
• $Vol = \int_{a}^{b} dV = \int_{a}^{b} A(x) dx$.

Q Why is this browned valid? The idea is the same as for solids of resolution. We define $R_x = solid$ between a $a \times x$ $S_{9} \stackrel{d}{=} Vol(R_{x}) = \lim_{\Delta x \to 0} \frac{Vol(R_{x+\Delta x}) - Vol(R_{x})}{\Delta x}$ We use antimuity of $A_{(x)}$ to show this limit is $A_{(x)}$ (the upine between $R_{x+\Delta x} \stackrel{d}{=} R_{x}$ can be under a orcustimated with cylinders of width $\Delta x \stackrel{d}{=} Vol(me = (\max A_{(t)}) \cdot \Delta x)$ $R = (\min A_{(t)}) \Delta x$.) A Headerst put is the determined if x = W = slives an better

A Handest part is the determine if x - or y - slices are better for computing.

PROBLEM:
PROBLEM:
Proble Tick a cylinder with barr a circle
of radius a
$$x$$
 slice it with
a plane through the cuter of the
barr at a 45° angle. (mpute the volumen between the plane a the barr
Solution: We look at the coss-sections in the x-direction
N(x)

y-slices = netangles

$$\begin{cases} hight = y \qquad (plane is inclined 45°) \\ base = b(y) \\ We use \qquad y \qquad b(y)/2 to determine b(y) \\ a \\ So a^{2} = y^{2} + (\frac{b(y)}{z})^{2} gives \\ b(y) = \sqrt{4(a^{2}-y^{2})} = 2\sqrt{a^{2}-y^{2}} \end{cases}$$

Next
$$Vxl = \int_{0}^{a} A(y) dy = \int_{0}^{a} 2 \sqrt{a^{2} - y^{2}} \cdot y dy$$

$$= \int_{0}^{a} 2 \sqrt{u} \left(-\frac{du}{2}\right) = \int_{0}^{a^{2}} \sqrt{u} du = \frac{2}{3} u^{3/2} \begin{vmatrix} a^{2} \\ a^{2} \\ a^{2} \\ a^{2} \\ du = -2y dy \ y = a \\ y =$$

As expected, we get the same value!

§ 3. Cylindrical Shells:

- . INPUT, A decreasing & continuous function f: [9,5] -> IR with a>0
- . Next, we notate the paph about the y-axis to get a solid of revolution R
 - Q: What is the volume of R? $f(b) = m = \min_{a \leq c \leq b} f(c)$ $f(a) = M = \max_{a \leq c \leq b} f(c)$ $a \leq c \leq b$
 - <u>Method</u>: Oscientimate VollR) by covering R with cylindrical shells Cylindrical shell = Cylinder 1 - Cylinder 2 Cylinder 1 = cylinder of height h(x) & radius x+&x = x+dx Cylinder 2 = ______x

Q What do the cross-sections of these shells look like?²²⁷ They look like concentric circles of radii x & x+dx Outer circum Ference = 2TC(x+dx) Thus look like concentric circles of radii x & x+dx Outer circum Ference = 2TC(x+dx) Thus look like?²²⁷

sy Examples:

() Sphere of radius r

To use cylindricall shells, we compute the Volume of the northern hemisphere $c_{F(x)} = \sqrt{r^2}$ here The top half crues from $a=0 \times b=r$. Use $h(x) + x^2 = \Gamma^2$ to get $h(x) = \Gamma^2 - X^2$ $dV = 2\pi x h(x) dx = c\pi x \int r^2 x^2 dx$ So $V_{PR}(R) = 2 \int 2\pi x \sqrt{r^2 - x^2} \, dx = 4\pi \int x \sqrt{r^2 - x^2} \, dx$ $= 4\pi \int x \sqrt{r^2 - x^2} \, dx = 2\pi \int x \sqrt{r^2 - x^2} \, dx$ $\int u = r^2 x^2 \quad x = 0 \quad \text{solution} = 2\pi \int u^{\frac{1}{2}} \frac{1}{2} \int u^{\frac{1}{2}} \frac{1}{2} \frac{1}{3} \int u^{\frac{1}{2}} \frac{1}{3} \int u^{\frac{1}{2} \frac{1}{3} \int u^{\frac{1}{2}} \frac{1}{3} \int u^{\frac{1}{2} \frac{1}{3} \int u^{\frac{1}{2} \frac{1}{3} \int u^{\frac{1}{2} \frac{1}{3} \int u^{\frac{1}{2} \frac{1}{3} \int$ las expected!) 2 Cone of height h & radius r Function: f(x) = f(x) $Function: f(x) = h \quad f(r,x) = -h \quad x + h$

We continue that fits decreasing /

$$dV = 2T \times f_{10} dx = 2T \times (-\frac{1}{4} \times +h) dx$$
So $Vd = \int_{0}^{\pi} 2T \times (-\frac{1}{4} \times +h) dx = \int_{0}^{\pi} (-2TT \frac{h}{4} \times^{2} + 2TT h) dx$

$$= -2TT \frac{h}{7} \int_{0}^{\pi} x^{2} dx + 2TT h \int_{0}^{\pi} x dx$$

$$= -2TT \frac{h}{7} \frac{x^{3}}{3} \int_{0}^{\pi} + 2TT \frac{h}{2} \int_{0}^{\pi} = -\frac{2}{3} TT \frac{h}{7} r^{3} + TT h r^{2}$$

$$= -\frac{2}{3} TT h r^{2} + TT h r^{2} = \frac{TT h}{3}$$
Q: What if we have 2 bounding when $y = f_{(X)} \otimes y = g_{(X)}$
with for a continuous on Ta, b a for a g

Q: What it we have 2 bounding unves
$$y = f(x)$$

with $f_{y} = cntinuous n [a,b] & f \ge g$
 $y = f(x)$
 $h(x) = f(x) - f(x)$

So
$$dV = 2\pi x h(x) dx$$
 by aylinder shell
 $Vol(R) = \int_{a}^{b} 2\pi x (f_{(x)} - g_{(x)}) dx$

[Typically, a=0] Alternative : Use disk method in top part & bottom part separately in the y-direction (A we need to express x in terms of y, which may not be possible, it depends in way fix, & g(x) are)