Lecture XXVIII: § 7.5 Arc Length
§7.6 The Area of a scerbace of solution
Fl. Arc Length
GOAL: Given a curse in the plane, we want To compute its length ($=$ length of a sting placed in Top of it)

Examples:
(1)

$$
\begin{aligned}
& L_{=} L_{1}+L_{2}=\sqrt{5} \\
& L_{1}=\sqrt{1+\frac{1}{4}}=\frac{\sqrt{5}}{2} \\
& L_{2}=\sqrt{1+\frac{1}{4}}=\frac{\sqrt{5}}{2}
\end{aligned}
$$

Condusin: Length of a polygonal curse (concatenation of segments) is the sum of the lengths of all chords. The length of a chord is imputed ria Pythagras' Theorem:

Q What about general curves?
A Approximate them by prlygnals with n prints well-distributed compute the length of the preygonal \& Take limit when $n \rightarrow \infty$.
Theorem: The arc length of the graph $y=f(x)$ ma continuous, differentiable function $f:[a, b] \longrightarrow \mathbb{R}$ with continuous derivative is $L=\int_{a}^{b} \sqrt{1+\left(f^{\prime}(x)\right)^{2}} d x$
Examples
(1) $f(x)=y$ so $f^{\prime}(x)=1, a=0, b=1 \& L=\int_{0}^{1} \sqrt{1+1} d x=\sqrt{2}$
(2) We have 2 functions

Fol $L_{1}: \quad f_{1}(x)=2 x \quad a=0, \quad b=\frac{1}{2} \quad h_{1}^{\prime}(x)=2 \quad L_{1}=\int_{0}^{1 / 2} \sqrt{1+4}=\frac{\sqrt{5}}{2}$
For $L_{2}: \quad f_{2}(x)=\frac{1}{2} x+\frac{3}{4}, \quad a=\frac{1}{2}, b=\frac{3}{2} \quad F_{2}^{\prime}=\frac{1}{2}=\int_{1 / 2}^{3 / 2} \sqrt{1+\frac{1}{4}}=\frac{\sqrt{5}}{2}$
Q: Why is the formula for L valid?
A Approximate $y=f(x)$ by prlygnals with n prints well-distributed, (obtained by subdividing $[a, b]$, as wedid fr Riemann Sums), then compute the length of the polygonal \& take limit when $n \rightarrow \infty$.

$$
\begin{gathered}
P_{0}=\left(a, f_{(a)}\right) \\
P_{1}=\left(x_{1}, f\left(x_{1}\right)\right) \\
\vdots \\
P_{n-1}=\left(x_{n-1}, f_{\left(x_{n-1}\right)}\right) \\
P_{n}=(b, f(b))
\end{gathered}
$$

STEP 1: Subdivide $[a, b]$ into n intervals $\left[a, x_{1}\right],\left[x_{1}, x_{2}\right]$, $\cdots,\left[x_{n-2}, x_{n-1}\right],\left[x_{n-1}, b\right]$ of lengths:

$$
\left\{\begin{array}{c}
\Delta x_{1}=x_{1}-a \\
\Delta x_{2}=x_{2}-x_{1} \\
\vdots \\
\Delta x_{n-1}=x_{n-1}-x_{n-2} \\
\Delta x_{n}=b-x_{n-1}
\end{array}\right.
$$

$$
\text { Set } \delta=\max _{1 \leqslant i \leqslant n} \Delta x_{i}
$$

(Example: $\left.x_{i}=\frac{(b-a}{n}\right) i$ fo all i gites $\left.\Delta x_{1}=\Delta x_{2}=\ldots=\Delta x_{n}=\frac{b-a}{n}\right)$

STEP 2: Call $P_{0}=\left(a, f_{(a)}\right), P_{1}=\left(x_{0}, f_{\left(x_{1}\right)}\right), \ldots, P_{n=1}=\left(x_{n-1}, f\left(f_{n-1}\right)\right.$, $P_{n}=(b, f(b))$
Draw the prlygmal joining $P_{0}, P_{1}, P_{2}, \ldots, P_{n-1}, P_{n}$.

STEP 3: Compute the length L_{i} of each $\bar{P}_{i-1} P_{i} \quad i=1, \ldots, n$.

$$
\begin{aligned}
L_{i} & =\sqrt{\left(\Delta x_{i}\right)^{2}+\left(f\left(x_{i}\right)-f\left(x_{i-1}\right)\right)^{2}} \\
& =\Delta x_{i}+\sqrt{1+\left(\frac{f\left(x_{i-1}+\Delta x_{i}\right)-f\left(x_{i-1}\right)}{\Delta x_{i}}\right)^{2}}
\end{aligned}
$$

Since f is differentiable on $\left(x_{i-1}, x_{i}\right)$ \& continuous $m\left[x_{i-1}, x_{i}\right]$, we can use the Mean Value Thurem to find x_{i}^{*} in $\left(x_{i}, x_{i+1}\right)$ with

$$
\frac{f\left(x_{i-1}+\Delta x_{i}\right)-f\left(x_{i-1}\right)}{\Delta x_{i}}=f^{\prime}\left(x_{i}^{*}\right)
$$

STEP 4: Compute the length Ley the prlygmal:

$$
\begin{array}{r}
L_{\text {Preys }}=L_{1}+\cdots+L_{n}=\sum_{i=1}^{n} \sqrt{1+\left(f^{\prime}\left(x_{i}^{*}\right)\right)^{2}} \Delta x_{i} \\
\quad \text { a Riemann }
\end{array}
$$

C a Riemann Sum!
Since f^{\prime} is continuous, we know $\sqrt{1+\left(f^{\prime}(x)\right)^{2}}$ is continuous \& integrable
Cinclusim: $L=\lim _{\max \left(\Delta_{i}\right) \rightarrow 0} L_{\text {poly }}=\lim _{\max \left(\Delta_{i}\right) \rightarrow 0} \sum_{i=1}^{n} \sqrt{1+\left(f^{\prime}\left(x_{i}^{*}\right)\right)^{2}} \Delta x_{i}$

$$
\text { so } \quad L=\int_{a}^{b} \sqrt{1+\left(f^{\prime}(x)\right)^{2}} d x
$$

! Often, it is bey hard the find the autiderivative of $\sqrt{1+\left(F^{\prime}(x)\right)^{2}}$ If so, numerical apporimatims (with Riemann Sumo) are the practical way to "compete" L with enough precision.

EXAMPLE 1: Find the length of the curse $y^{2}=x^{3}$ between $(0,0) \&$ $\frac{\text { Soln 1 }}{(0,0) \text { Sols for y } y=x^{3 / 2}} \leadsto y^{\prime}=\frac{3}{2} x^{1 / 2}$ coutimubies
S_{σ}

$$
\begin{array}{rlr}
L & =\int_{0}^{4} \sqrt{1+\left(y^{\prime}\right)^{2}} d x=\int_{0}^{4} \sqrt{1+\frac{9}{4} x} d x=\frac{4}{9} \int_{1}^{10} \sqrt{u} d u \\
& =\left.\frac{4}{9} \frac{2}{3} u^{3 / 2}\right|_{1} ^{10}=\frac{8}{27}\left(10^{3 / 2}-1\right) . & \\
d u=\frac{9}{4} d x \quad x=4 \rightarrow u=1 \\
x=4 \rightarrow 0
\end{array}
$$

Sole 2: Use implicit differentiation to find y^{\prime}

$$
2 y y^{\prime}=3 x^{2}
$$

For $y \neq 0$ we pet $y^{\prime}=\frac{3}{2} \frac{x^{2}}{y}$
(1 bad pt is Ok)

$$
\left(y^{\prime}\right)^{2}=\frac{9}{4} \frac{x^{4}}{y^{2}}=\frac{9}{4} \frac{x^{4}}{x^{3}}=\frac{9}{4} x
$$

We get $L=\int_{0}^{4} \sqrt{1+\frac{9}{4} x} d x=\frac{8}{27}\left(10^{3 / 2}-1\right)$ (same calculation!)
Ans length element:

$$
\begin{aligned}
& d S=\sqrt{(d x)^{2}+(d y)^{2}} \\
& \left\{\begin{array}{l}
d S=d x \sqrt{1+\left(\frac{d y}{d x}\right)^{2}}=\sqrt{1+\left(y^{\prime}\right)^{2}} d x \\
d S=d y \sqrt{1+\left(\frac{d x}{d y}\right)^{2}}=\sqrt{1+\left(x^{\prime}\right)^{2}} d y
\end{array}\right.
\end{aligned}
$$

So $L_{A B}=\int_{a}^{b} d S=\int_{a}^{b} \sqrt{1+\left(y^{\prime}\right)^{2}} d x$

$$
=\int_{c}^{d} d S=\int_{c}^{d} \sqrt{1+\left(x^{\prime}\right)^{2}} d x
$$

Lif $y=y(x)$ can be vurrition as $x=x(y)$.
Q What if we wite $x=x(y)$ in EXAMPLE I?

$$
x=y_{8}^{2 / 3} \leadsto x^{\prime}=\frac{2}{3} y^{-1 / 3} \quad 30\left(x^{\prime}\right)^{2}=\frac{4}{9} y^{-2 / 3}
$$

$L=\int_{0}^{8} \sqrt{1+\frac{4}{9} y^{-2 / 3}} d y$ en this is harder To compute, but it can be done!

$$
\sqrt{1+\frac{4}{9} y^{-2 / 3}}=\sqrt{1+\frac{4}{9 y^{2 / 3}}}=\sqrt{\frac{1}{y^{2 / 3}}\left(y^{2 / 3}+\frac{4}{9}\right)}=y^{-1 / 3} \sqrt{y^{2 / 3}+\frac{4}{9}}
$$

$$
\begin{aligned}
& u=\frac{4}{9}+y^{2 / 3} \\
& d u=\frac{2}{3} y^{-1 / 3} d y \\
& y=0 \leadsto u=4 / 9 \\
& y=8 \leadsto u=\frac{4}{9}+4=\frac{40}{9}
\end{aligned}
$$

So $L=\int_{4 / 9}^{40 / 9} \sqrt{u} \frac{3}{2} d u=\frac{8}{27}\left(10^{3 / 2}-1\right)$

EXAMPLE 2: Circumference of races P

Top-half can be parancteriged:

$$
\begin{aligned}
f(x)=\sqrt{r^{2}-x^{2}}
\end{aligned} \quad \leadsto f^{\prime}(x)=\frac{1}{2} \frac{-2 x}{\sqrt{r^{2}-x^{2}}}=\frac{-x}{\sqrt{r^{2}-x^{2}}}
$$

$$
L=2 \int_{-r}^{r} \sqrt{1+\frac{x^{2}}{r^{2}-x^{2}}} d x=2 \int_{-r}^{r} \frac{r}{\sqrt{r^{2}-x^{2}}} d x=2 \int_{-r}^{r} \frac{r}{r \sqrt{1-\left(\frac{x}{r}\right)^{2}}} d r
$$

$$
\begin{aligned}
& =2 \int_{-1}^{1} \frac{r}{\sqrt{1-u^{2}}} d u=5\left(2 \int_{-1}^{1} \frac{1}{\sqrt{1-u^{2}}} d u\right)
\end{aligned}
$$

$$
u=\frac{x}{r}
$$

$d u=\frac{1}{r} d x$
$x=-r \leadsto u=-1$
$x=r \leadsto u=1$
cincomenference of unit disk
(we'll compute it later with Ting substituting!)
\$ 2 Surfaces if Revolution:

Process: Revolve $y=f(x)$ about the x-axis \& take the surface S of the solid of revolution $(S=$ surface of undution) Q: What's Ama (S)?

STEP 1 Take n strips $\left[x_{k-1}, x_{k}\right]$ fo $k=1, \ldots, n$ \& take the surfaces of resolution obtained fun f in each strip. We get the Frustum (of a cone)

$2 \pi f(x)$
(*)

$$
\begin{aligned}
& \text { Aral Frustiven) } \stackrel{(\mathbb{x})}{\approx} 2 \pi f(x) d S \\
& =2 \pi f(x) \sqrt{1+\left(f^{\prime}\right)^{2}} d x \\
& \uparrow \\
& \text { need } f^{\prime} c_{0} \text { be cuTimurus }
\end{aligned}
$$

So Ama $\approx d S \cdot \frac{2 \pi\left(h_{(x)}+f_{(x+\Delta x)}\right)}{2}$
STEP 2 Compute Riemann Sums

$$
\operatorname{Arar}(S)=\lim _{\max \Delta x_{k} \rightarrow 0} \sum_{n=1}^{n} \text { Ana Frusturn } m\left[x_{k-1}, x_{k}\right]
$$

given \quad Aras $(S)=\int_{a}^{b} 2 \pi f(x) \sqrt{1+\left(f_{(x)}^{\prime}\right)^{2}} d x \quad \stackrel{i f}{=} f^{\prime}$ is
EXAMPLE 1: Sphere of radius a :

$$
\begin{aligned}
& f(x)=\sqrt{a^{2}-x^{2}} \\
& f^{\prime}=\frac{-x}{\sqrt{a^{2}-x^{2}}} \text { so }\left(f^{\prime}\right)^{2}=\frac{x^{2}}{a^{2}-x^{2}} . \\
&\text { Ama ls })=\int_{-a}^{a} 2 \pi \sqrt{a^{2}-x^{2}} \sqrt{1+\frac{x^{2}}{a^{2}-x^{2}}} d x \\
&=\int_{-a}^{a} 2 \pi a d x=2 \pi a(2 a)=4 \pi a^{2}
\end{aligned}
$$

Optimal Reding: Q : Why (k) ?
A: Use the cone novel! Getting the funstrem gives a "bind Fappagid".

- Mole Example: Cone

We cut it open \& lay it out $=$ circular sector of a disk of radius L

Total ana $(\Theta)=\pi L^{2} \leadsto$ Sector ana $=\pi L^{2}\left(\frac{\alpha}{2 \pi}\right)$

$$
\text { Circumference of the sector }=2 \pi L \frac{\alpha}{2 \pi}=\begin{gathered}
\text { fill incentrenence of } \\
\text { base of the are }
\end{gathered}
$$

So $\frac{L \alpha}{2 \pi}=r$, giving $\frac{r}{L}=\frac{\alpha}{2 \pi}$
Conclusion: Ana $_{\text {ma }}(S)=\pi L^{2} \frac{r}{L}=\pi r L$

- Frustum of a core: We start firm L, r_{1}, r_{2} \& complete
 it to get a full cane of side length L, with a base of radius r_{1}.

$$
\begin{align*}
\operatorname{Ama}(S) & =\operatorname{Ama} \operatorname{Cme}\left(L_{1}, r_{1}\right)-\operatorname{Ama} C_{m e}\left(L_{2}, r_{2}\right) \\
& =\pi r_{1} L_{1}-\pi r_{2} L_{2} \\
& =\pi\left(r_{1} L_{1}-r_{2} L_{2}\right) \quad(* x) \tag{*x}
\end{align*}
$$

- But similarity of Δ gives $\frac{L_{2}}{r_{2}}=\frac{L_{1}}{r_{1}}$ so $r_{2} L_{1}=r_{1} L_{2}$
- Now, we add and substract $\pi r_{1} L_{2}$ in ($* *$) To get:

$$
\begin{aligned}
\operatorname{Ana}(S) & =\pi\left(r_{1} L_{1}-r_{1} L_{2}+r_{1} L_{2}-r_{2} L_{2}\right) \\
& =\pi\left(r_{1}\left(L_{1}-L_{2}\right)+r_{2}\left(L_{1}-L_{2}\right)=\pi\left(r_{1}+r_{2}\right)\left(L_{1}-L_{2}\right)\right.
\end{aligned}
$$

Conclude: Area (Frustum) $=2 \pi \frac{\left(r_{1}+r_{2}\right)}{2} L$
(predicted by (*))

EXAMPLE 2 We veify thes froula with ru inteqcal fromula:

Cone $=$ splid of usolutim stained by votating a sepment.

$$
\begin{aligned}
& y=f(x)=m x+b \\
& \text { At }(0,0): 0=0+b \quad \text { so } b=0 \\
& \text { At }\left(h_{2}, r_{2}\right): r_{2}=m h_{2} \text { so } f(x)=\frac{r_{2}}{h_{2}} x
\end{aligned}
$$

Thun $f^{\prime}(x)=\frac{r_{2}}{h_{2}} \quad$ contimuores on $\left[0, h_{1}\right]$

$$
\begin{aligned}
\text { Ara }(\text { Frustum }) & =\int_{h_{2}}^{h_{1}} 2 \pi \frac{r_{2}}{h_{2}} x \sqrt{1+\left(\frac{r_{2}}{h_{2}}\right)^{2}} d x \\
& =\int_{h_{2}}^{h_{1}} 2 \pi \frac{r_{2}}{h_{2}} x \frac{\sqrt{h_{2}^{2}+r_{2}^{2}}}{h_{2}} d x \\
& =\left.\pi \frac{r_{2}}{h_{2}^{2}} x^{2} \sqrt{h_{2}^{2}+r_{2}^{2}}\right|_{h_{2}} ^{h_{1}}=\frac{\pi r_{2}}{h_{2}^{2}} \sqrt{h_{2}^{2}+r_{2}^{2}}\left(h_{1}^{2}-h_{2}^{2}\right)
\end{aligned}
$$

In rden to get $2 \pi \frac{\left(r_{1}+r_{2}\right)}{2}\left(L_{1}-L_{2}\right)$, we need to use hignomity
By similaiily, we get $\frac{h_{2}}{h_{1}}=\frac{L_{2}}{L_{1}}=\frac{r_{2}}{r_{1}}, \frac{\sqrt{h_{1}^{2}+r_{1}^{2}}}{\sqrt{h_{2}^{2}+r^{2}}}=L_{1}$
So $\overline{h_{2}^{2}}\left(h_{1}^{2} h_{2}^{2}\right)=\sqrt{h_{2}^{2}+r_{2}^{2}}=L_{2}$
So $\frac{\pi r_{2}}{h_{2}^{2}} \sqrt{h_{2}^{2}+r_{2}^{2}}\left(h_{1}^{2}-h_{2}^{2}\right)=\pi r_{2} L_{2}\left(\left(\frac{h_{1}}{h_{2}}\right)^{2}-1\right)=\pi r_{2} L_{2}\left(\left(\frac{L_{1}}{L_{2}}\right)^{2}-1\right)$

$$
=\pi r_{2} \frac{1}{L_{2}}\left(L_{1}^{2}-L_{2}^{2}\right)=\pi \frac{r_{2}}{L_{2}}\left(L_{1}-L_{2}\right)\left(L_{1}+L_{2}\right)
$$

$$
=\pi\left(L_{1}-L_{2}\right)\left(r_{2} \frac{L_{1}}{L_{2}}+r_{2}\right)
$$

$$
=\pi\left(L_{1}-L_{2}\right)\left(r_{2} \cdot \frac{r_{1}}{r_{2}}+r_{2}\right)
$$

$$
=\pi\left(L_{1}-L_{2}\right)\left(r_{1}+r_{2}\right)
$$

Conclude: Ama $($ Frustriem $)=\pi\left(r_{1}+r_{2}\right)\left(L_{1}-L_{2}\right)$ as we wanted!

