

Indusin: Length of a polygonal curve (concaternation of sequents)
is the sum of the lengths of all chords. The length of a chord is unputed
ria Pythagores' Theorem:
$$(q,b)$$
 has length $\sqrt{(c-a)^2 + (d-b)^2}$
Q What about general curves?
A Approximate them by polygonals with a points well-distributed
compute the length of the polygonal & take limit when $n \to \infty$.
Theorem: The arc length of the graph $y = f_{(x)}$ is a continuous,
differentiable function $f_1: [q, b] \longrightarrow \mathbb{R}$ with continuous derivative
is $L = \int_{a}^{b} \sqrt{1 + (f_{(x)})^2} dx$
Examples
 $\bigcirc f_{(x)} = g$ so $f'_{(x)} = 1$, $a = 0$, $b = 1$ a $L = \int \sqrt{1+1} dx = \mathbb{R}$

(2) We have z functions For $L_1: f_1(x_1 = 2x) = \frac{1}{2}x + \frac{3}{4}, \quad A = 0, \quad b = \frac{1}{2} = \int_{2}^{1} f_1(x_1 = 2x) + \frac{1}{2} = \int_{2}^{1} \int_{1+\frac{1}{4}}^{1} = \frac{15}{2}$ For $L_2: f_2(x) = \frac{1}{2}x + \frac{3}{4}, \quad A = \frac{1}{2}, \quad b = \frac{3}{2}, \quad b' = \frac{1}{2} = \int_{2}^{1} \int_{1+\frac{1}{4}}^{1} = \frac{15}{2}$ Q: Why is the formula for L valid?

A Approximate y=f_(x) sy polygmals with n points well-distributed lobtained by subdividing [a, b], as we did for Riemann Sums), then compute the length of the polygonal & Take limit when n -> 00.

STEP 1: Subdivide [a, 5] into n intervals $[a, x_1]$, $[x_1, x_2]$, ..., $[x_{n-2}, x_{n-1}]$, $[x_{n-1}, b]$ of lengths: $\begin{cases} \Delta x_1 = x_1 - a \\ \Delta x_2 = x_2 - x_1 \\ \vdots \\ \Delta x_{n-1} = x_{n-1} - x_{n-2} \\ \Delta x_n = b - x_{n-1} \end{cases}$ (Example : $x_1 = (b-a)i \ fn$ all i $\Delta x_n = b - x_{n-1}$ gives $\Delta x_1 = \Delta x_2 = \cdots = \Delta x_n = \frac{b-a}{n}$) STEP 2: Cell $P_0 = (a, F(a_1)), P_1 = (x_0, F(x_1)), \cdots, P_n = (x_{n-1}, F(x_1)), P_n = (b, F(b))$

Draw the polygmal journe Po, P, P2, ---, Pn-1, Pn.

STEP 3: Compute the length List each
$$\overline{P_{i_1}P_{i_1}}$$
 (21,..., N
Ti
Ti
Ti
 F_{i_1} $F_{(x_{i_1})}$ F

So
$$L = \int_{0}^{q} \frac{1}{1+(q')^{2}} dx = \int_{0}^{q} \frac{1}{1+\frac{q}{2}x} dx = \frac{q}{3} \int_{0}^{1} \frac{1}{1} \frac{1}{q} \frac{1}{q} \int_{0}^{1} \frac{1}{1} \int_{$$

$$\int \frac{1+\frac{q}{q}}{\sqrt{2}} \frac{\sqrt{2}}{s} = \int \frac{1+\frac{q}{q}}{\sqrt{2}} \frac{\sqrt{2}}{s} = \int \frac{1}{\sqrt{2}} \sqrt{\frac{2}{3}} \frac{\sqrt{2}}{s} \frac{\sqrt{2$$

128 0 . Model Example : Cone We out it open æ lag it out = circular sector of a disk of radius L Total ana $(\tilde{\Theta}) = \pi L^2$ ~ Sector and $= \pi L^2 \left(\frac{d}{d\pi}\right)$ lincumference of the sector = $2\pi L \frac{d}{2\pi}$ = full cincumference of base of the comeSo $\frac{L}{2\pi} = \Gamma$, giving $\frac{\Gamma}{L} = \frac{d}{2\pi}$ $\frac{\text{linclusim}}{L}: \text{Ana}(S) = \Pi L^2 \frac{\Gamma}{L} = \Pi \Gamma L$ • Frustrum of a come : We start from L, r,, rz & complete if to get a full one of side length L, with a base of radius r_1 . $S = L_1 - L_2$ Area $(S) = Area Cone(L_1, r_1) - AreaCone(L_2, r_2)$ $= \overline{\mathcal{N}} r_1 L_1 - \overline{\mathcal{N}} r_2 L_2$ $= \pi (r, L, -r_2 L_2) \quad (**)$. But similarity of Δ gives $\frac{L_2}{\Gamma_2} = \frac{L_1}{\Gamma_1}$ so $\Gamma_2 L_1 = \Gamma_1 L_2$. Now, we add and substract Tr, Lz in (**) To get: $Aua(S) = \pi(r_{1}L_{1} - r_{1}L_{2} + r_{1}L_{2} - r_{2}L_{2})$ = $\pi(r_{1}(L_{1}-L_{2}) + r_{2}(L_{1}-L_{2}) = \pi(r_{1}+r_{2})(L_{1}-L_{2})$

Include: Aria (Frustrum) = 2it ((1+12) L (pudicted by (*))

EXAMPLE 2 We varie this formula with our integral formula:

$$\begin{bmatrix} F_{1} \\ F_{2} \\ F_{1} \\ F_{2} \\ F_{2} \\ F_{2} \\ F_{1} \\ F_{2} \\ F_{2}$$