Lecture XXX: \$8.2 Expments \& Logarithms
si Basics m expments:
Q: Given $a>0$ \& x in \mathbb{R}, what is a^{x} ?

- We know the answh fr special cases
(1) If x is an integer :

1) $x=n>0$

$$
\begin{aligned}
& a^{n}=\underbrace{a \cdot a \cdots a}_{n \text { times }} \\
& a^{0}=1 \quad(\text { pr } a \neq 0) \\
& a^{-n}=\left(a^{-1}\right)^{n}=\underbrace{\frac{1}{a} \cdots \cdot \frac{1}{a}}_{n \text { Unis }}
\end{aligned}
$$

2) $x=0$

$$
\text { 3) } x=-n<0
$$

(2) If x is rational, write $x=\frac{m}{n}$ with $n>0$ \& m, n-pine ($\frac{\pi}{4}=\frac{1}{2}$)
Then $a^{\frac{m}{n}}=(\sqrt[n]{a})^{m}$, where $\sqrt[n]{a}$ is the unique proitere number b with $b^{n}=a \quad($ ok fr $a>0$)
Observe: We don't really need T_{0} use the reduced expression of x

$$
a^{\frac{k m}{k n}}=(\sqrt[k n]{a})^{k m}=(c)^{k m} \text { where } c \text { is the unique pritive }
$$

$$
\text { number with } c^{k n}=a
$$

But if $b^{n}=a$, then $c^{k}=b$ by uniqueness of $c \& b$

So $a^{\frac{m}{n}}=b^{m}=a^{\frac{k m}{k n}}$ for any k integer.
\Rightarrow General definition : Approximate x using rational numbers arbitrary close $T_{0} x \&$ define a^{x} via a limiting_proess.

Definition:
$a^{x}=\lim _{r \rightarrow x} a^{r} a^{r}$
for $a>0$ \& x any val number

Good News: By construction, $f_{(x)}=a^{x}$ will automatically be continuous
BAD NEWS: It's not clear $f(x)$ exists (the limit may depend on how we choose $r \rightarrow x$) Fr example, if $x=\frac{m}{n}$ is a actinal, does the limit exist and agree with the old definition $a^{\frac{m}{n}}=(\sqrt[n]{a})^{m}$?

Of corse, it all corks sent fire in the end (reason: law of expments!)
Law of expments:
(1) $a^{x} a^{y}=a^{x+y}$
(2) $a^{x-y}=\frac{a^{x}}{a^{y}}$
(3) $\left(a^{x}\right)^{y}=a^{x \cdot y}$

Proof: It's enough to check these formulas for x, y ratimal For general x, y, approximate by rativals \& take limits
Indeed, if $x=\lim r$, then $x+y=\lim r+s$, \& the

$$
\left.y=\operatorname{lims} \quad \begin{array}{ll}
x-y & =\lim r-s \\
\text { in } Q & x \cdot y
\end{array}\right)=\lim r .
$$

formulas attained by limits in both sides of (1), (2) 4(3) with agree

Now, assume $x=\frac{m}{n}, y=\frac{l}{n}$ (can un the same denominator!)
Pick $b>0$ with $b^{n}=a \quad$ (ie $b=\sqrt[n]{a}$)

$$
\begin{aligned}
& \text {. } a^{x}=(\sqrt[n]{a})^{m}=b^{m} \\
& \text { - } a^{y}=(\sqrt[n]{a})^{l}=b^{l} \text { so } a^{x} a^{y}=b^{m} b^{l}=\underbrace{b \ldots b}_{m \text { times }} \underbrace{b \cdots \cdot b}_{l \text { times }}=b^{m+l} \\
& \text { (1). } a^{x+y}=a^{\frac{l+m}{n}}=(\sqrt[n]{a})^{l+m}=b^{l+m}
\end{aligned}
$$

(2). $a^{x-y}=a^{\frac{l-m}{n}}=(\sqrt[n]{a})^{l-m}=b^{l-m}$

- $\frac{a^{x}}{a^{y}}=\frac{b^{m}}{b^{l}}=\underbrace{\frac{b-1}{b} \cdots \frac{1}{b}}_{\text {m Times }}=b^{l-m}$ T same value!
(3). $a^{x y}=a^{\frac{l m}{n^{2}}}=\left(n^{2} \sqrt{a}\right)^{l m}=c^{l m}$ with $c^{n^{z}}=a$

But $c^{n^{2}}=\underbrace{c \cdots c \cdot}_{n^{2} \text { times }}=\underbrace{\underbrace{(c-c)}_{n \text { times }} \cdots \underbrace{(c-c)}_{n \text { times }}}_{n \text { terces }}=a=\underbrace{b \cdots b}_{n \text { Times }}$,
So $\quad c^{n}=b$.

$$
\left(a^{k}\right)^{y}=\left(b^{m}\right)^{\frac{l}{n}}=\left(\sqrt[n]{b^{m}}\right)^{l}=d^{l} \quad \text { with } \quad d^{n}=b^{m}
$$

But $d^{n}=b^{m}=\left(c^{n}\right)^{m}=\frac{c^{n} \cdots c^{n}}{m \text { times }}=c^{n \cdot m}=\left(c^{m}\right)^{n}$
\& both $d, c>0 \quad$ so $d=c^{m}$.
\& both $d, c>0$ so $d=c^{m}$.
Conclude: $\quad a^{x y}=c^{l m}=\left(c^{m}\right)^{l}=d^{l}=\left(a^{x}\right)^{y}$
\$2 Graphs of a^{x} :
Kl will have 3 cases: $a=1, a>1 \& 0<a<1$.
(1) If $a=1$: $a^{x}=1$ fr all x

(2) If $a>1$: a^{x} is untinuous \& $a^{r}>1$ fr any rratimal So the same is thee for $a^{x} \quad\left(a^{x}>1\right.$ f $\left.x>0\right)$

- a^{x} is incuasing (if $x<y$, then $a^{y}=a^{(y-x)+x}=$ $\left.=a^{(y-x)} a^{x} \underset{y^{2}-x>0}{>} 1 \cdot a^{x}=a^{x}\right)$

- $\lim _{x \rightarrow \infty} a^{x}=\infty$
- Rauge $=\{y>0\}$
- strictly imcuasing.
so it's injectire (horigntal line Test)
(3) If $0<a<1$: Write $a^{x}=\left(\frac{1}{a}\right)^{-x}$ \& now $\frac{1}{a}>1$.

We get the new graph by reflectin of (2) abrut the y-axis

- $a^{x}>1$ for $x<0$
- strictly decuasing (so injectire!)

$$
\begin{aligned}
& \text { - } \lim _{x \rightarrow \infty} a^{x}=0 \\
& \text { - } \lim _{x \rightarrow-\infty} a^{x}=\infty \\
& \text { - Range }=\{y>0\}
\end{aligned}
$$

§3 Logarithms:
Conclusion: Fr $a \neq 1$, we get $\left.a^{x}: \mathbb{R} \longrightarrow 3 y>0\right\}$ is injectise and suyectire, so 1-To-1 \& we can find an inverse functin: $\log _{a}:\{x>0\} \longrightarrow \mathbb{R}$

$$
x \longrightarrow \log _{a} x
$$

We call it logarithm to the base a

- Graphs of log ar x : Reflect the graph of a^{x} along the $x=y$ line

Note: $\log _{\frac{1}{2}}(x)=-\log _{a} x \quad\left[\left(a^{y}\right)=x=\left(\frac{1}{a}\right)^{-y}\right]$
Note: . If $a>1 \quad \lim _{x \rightarrow \infty} \log _{a} x=\infty, \lim _{x \rightarrow 0} \log _{a} x=-\infty$

- If $0<a<1 \quad \lim _{x \rightarrow \infty} \log _{a} x=-\infty \quad \lim _{x \rightarrow 0} \log _{a} x=+\infty$
- Basic proputies of log:
(1) $\log _{a}\left(x_{1} x_{2}\right)=\log _{a} x_{1}+\log _{a} x_{2}$.

Why? $y_{2}=\log _{a} x_{1}$ mans $a^{y_{1}}=x_{1}$

$$
\begin{equation*}
y_{2}=\log _{a} x_{2} \tag{2}
\end{equation*}
$$

\& $x_{1} x_{2}=a^{y_{1}} a^{y_{2}}=a^{y_{1}+y_{2}}$ $y_{1}+y_{2}=\log _{a}\left(x_{1} x_{2}\right)$
(2) $\log _{a}\left(\frac{x_{1}}{x_{2}}\right)=\log _{a} x_{1}-\log _{a} x_{2}$

Why? $a^{y_{1}-y_{2}}=\frac{a^{y_{1}}}{a^{y_{2}}}=\frac{x_{1}}{x_{2}}$ so $y_{1}-y_{2}=\log _{a}\left(\frac{x_{1}}{x_{2}}\right)$.
(3) $\quad \log _{a}\left(x^{b}\right)=b \log _{a} x$

Why? If $x=a^{y}$ Then $x^{b}=\left(a^{y}\right)^{b}=a^{b y}$: So $\log _{a} x^{b}=b y$
(4) $\log _{a}\left(a^{x}\right)=x$ by definition $\left(a^{x}=a^{\square^{\log _{a} a^{x}}}\right.$ froes $\left.D=x\right)$
(5) $a^{\log _{a} x}=x \quad$ by definition $\left(y=\log _{a} x\right.$ mans $\left.a^{y}=x\right)$
(6) $\log _{a} 1=0, \log _{a} a=1$

