Lecture $X X X 1:$ §8.3 The Number e \& the Function $y=e^{x}$
§8.4 The natural logarithm function
\$8.5 Population growth
Recall: Fr $a>0$ \& x neal, we define $a^{x}=\lim _{\substack{r \rightarrow x \\ \operatorname{cin} Q}} a^{r} \quad$ (expmential)
Here, $a^{r}=a^{\frac{m}{n}}=(\sqrt[n]{a})^{m}$ where $\sqrt[n]{a}>0$ is the unique privies solution $\operatorname{to} y^{n}=a$

- For $a \neq 1: a^{x}: \mathbb{R} \longrightarrow \mathbb{R}_{>0}=\{y>0\}$ is invertible, with inseuse
 s 1. Juivatives of expsentials:

We compute $\frac{d}{d x} a^{x}$ for $x>0$ using the method of increments \& the loans of exponents

$$
\begin{aligned}
& \frac{d}{d x} a^{x}=\lim _{\Delta x \rightarrow 0} \frac{a^{x+\Delta x}-a^{x}}{\Delta x}=\lim _{\Delta x \rightarrow 0} \frac{a^{x} a^{\Delta x}-a^{x}}{\Delta x}=\lim _{\Delta x \rightarrow 0} \frac{a^{x} \frac{a^{\Delta x}-1}{\Delta x}}{} \\
&=a^{x} \lim _{\Delta x \rightarrow 0} \frac{a^{\Delta x}-1}{\Delta x} \quad \text { as ling as } \lim _{\Delta x \rightarrow 0} \frac{a^{\Delta x}-1}{\Delta x} \text { exists! } \\
& \text { lit does!) }
\end{aligned}
$$

- $\lim _{h \rightarrow 0} \frac{a^{h}-1}{h}=\left.\frac{d}{d x} a^{x}\right|_{x=0}=$ slope of the tangent line $T_{0} y=a^{x}$ at $(0,1)$

positive slopes

$$
a>1
$$

$0<2<1$

Definition e is the unique number satisfying $\lim _{h \rightarrow 0} \frac{e^{h}-1}{h}=1$ (Tangen thine has slop 1)

$$
\begin{aligned}
& e=2.71828 \cdots \cdot=\lim _{n \rightarrow \infty}\left(1+\frac{1}{n}\right)^{n} \\
& \text { (eton explosion) } \\
& \quad{ }^{n} \text { Jamb Bennonillic }
\end{aligned}
$$

laccuracy up To 4 decimal places by settling $n=100,000$) (1695-1705) Euler found an alternative way to compute this limit.

$$
e=\lim _{n \rightarrow \infty}\left(1+\frac{1}{1!}+\frac{1}{2!}+\cdots+\frac{1}{n!}\right)
$$

(accuracy it To 4 decimal ${ }^{23,24}$ places by setting $n=7$)
Observation: $\frac{d}{d x} e^{x}=e^{x} \quad$ Call e^{x} the exprential function
It's the unique solution to $\left\{\begin{array}{l}f^{\prime}=f \\ f_{(0)}=1\end{array}\right.$

- In turn $\frac{d}{d x}\left(c e^{x}\right)=c \frac{d}{d x} e^{x}=c e^{x}$ also solves $f^{\prime}=f$.

Proposition All solutions to $f^{\prime}=f$ are of the form $f(x)=c e^{x}$ Is some parameter c.
Why? Consider a solution $f(x)$ \& write $g(x)=\frac{f(x)}{e^{x}}$.
By the Quotient Rule we get

$$
g^{\prime}=\frac{f_{(x)}^{\prime} e^{x}-f(x)\left(e^{x}\right)^{\prime}}{\left(e^{x}\right)^{2}}=\frac{f^{\prime} e^{x}-f e^{x}}{e^{2 x}}=\frac{e^{x}\left(f^{\prime}-f\right)}{e^{2 x}}=0
$$

And $g_{(x)}^{\prime} \equiv 0$ for all x frees g to be a constant $(=c)$
Thun $\frac{f(x)}{e^{x}}=c$ maxing $f=c e^{x}$
Consequence: $\frac{d}{d x} e^{x}=e^{x}$ gives $\int e^{x} d x=e^{x}+C$
Examples: (i) $\int e^{5 x} d x \underset{\substack{ \\\bar{L}=5 x}}{ } \int e^{u} \frac{d u}{5}=\frac{1}{5} \int_{5 x} e^{4} d u=\frac{1}{5}\left(e^{u}+C\right)$

$$
\begin{aligned}
& u=5 x \\
& d u=5 d x
\end{aligned} \quad=\frac{e^{5 x}}{5}+\underbrace{\frac{C}{5}}=\frac{e^{5 x}}{5}+\tilde{C}
$$

(2)

$$
\begin{aligned}
& \int x e^{x^{2}} d x=\int e^{u} \frac{d u}{2}=\frac{1}{2} e^{u}+C=\frac{1}{2} e^{x^{2}}+C \\
& d u=2 x d x
\end{aligned}
$$

§2. The natural logarithm:
Depmition: $\ln (x)=\log _{e}(x)$ so $y=\ln (x)$ means $e^{y}=x$
Pwpsition: $\ln (x)$ is infinitely differentiable and $\frac{d}{d x} \ln x=\frac{1}{x}$
Why? Use implicit differmatiation in $e^{y}=x \quad y=y(x)$

$$
\frac{d}{d x} m \quad e^{y}=x \quad \text { pines } \quad e^{y} y^{\prime}=1 \text { so } y^{\prime}=\frac{1}{e^{y}}=\frac{1}{x}
$$

Properties of $\ln (x)$:

- Slopes of tangent lives for e^{x} a lux an related (graphs are minors o(each other)

$$
\text { - } \lim _{x \rightarrow 0^{+}} \ln x=-\infty \quad \lim _{x \rightarrow \infty} \ln x=\infty
$$

(because e>1)
Integration $\int \frac{d x}{x}=\ln |x|+C$
Examples: (1) $\int \frac{x^{3}}{x^{4}+1} d x=\int \frac{d u}{4 u}=\frac{1}{4} \ln u+C=\frac{1}{4} \ln \left(x^{4}+1\right)$
(2)

$$
\begin{aligned}
\int \tan x d x=\int \frac{\operatorname{sen} x}{\cos x} d x \underset{\substack{u=\cos x}}{=\int \frac{-d u}{u}}= & -\ln u+C \\
d u=-\operatorname{sen} x & =-\ln \cos x+C \\
& \ln \cos x>0 .
\end{aligned}
$$

§3. Other bases of exponential \& logarithms:

- Key.fact If $a=e^{b}$, then $a^{x}=\left(e^{b}\right)^{x}=e^{b x}$

So $\frac{d}{d x} a^{x}=\frac{d}{d x} e^{b x}=b e^{x}=(\ln a) e^{x}$ Law fexpments

- Similarly if $y=\log _{a} x$, then $x=a^{y}=\left(e^{b}\right)^{y}=e^{b y}$

So $\ln x=$ by $=\ln (a) y$ so $\log _{a} x=\frac{\ln x}{\ln a}$
In particulan: $\frac{d}{d x}\left(\log _{a} x\right)=\frac{1}{\ln a} \frac{d}{d x} \ln x=\frac{1}{x \ln a}$
Q: Growth of $e^{x} \& \ln x$?
$\frac{d}{d x} e^{x}=e^{x}>0$ so e^{x} is shiclly incuaing

$$
\frac{d}{d x} \ln x=\frac{1}{x}>0 \text { so } \ln x
$$

\qquad
But how fast do they gow? (We'll use L'Hspital wele to confium this)
(1) $\lim _{x \rightarrow \infty} \frac{e^{x}}{x^{n}}=+\infty$ for any pritise intefue n (so e^{x} pooss fast than ANY prlyunuial)
(2) $\lim _{x \rightarrow \infty} \frac{\ln x}{x p}=0$ fo all $p>0$ (so $\ln x$ yous slowen than ANY pisitive pactimal proen of x, es $x^{1 / 2}, x^{1 / 3}, \ldots$.)
s4. Solving Differmatial Equatins
Puprition: $y^{\prime}=k y \quad$ fratixed k has solutides $y=c e^{k x}$ where c is a constant
Why? Use exparation if variables $\frac{d y}{d x}=k y \leadsto \frac{d y}{y}=k d x$ So $\int \frac{d y}{y}=\int k d x=k x+C$ so $y=e^{k x+C}=\underset{\substack{\prime \prime \\ \text { constante }}}{e^{C}} e^{k x}$
To check that there are no more solutimes: write $g(x)=\frac{f(x)}{e^{k x}}$ where
$f(x)$ solbes $f^{\prime}=k f$.

Then $g^{\prime}(x)=\frac{f^{\prime} e^{k x}-f k e^{k x}}{\left(e^{k x}\right)^{2}}=\frac{k f e^{k x}-f k e^{k x}}{\left(e^{k x}\right)^{2}}=0$
So g is a constant, that is $f(x)=c e^{k x}$ fr some fixed e
85. Population growth

Basic Model: \quad Set $N(t)=$ population at time \quad (eg. bacteria)

- Assumptions: unlimited food, no predators, no deaths (Toy MODEL)
- Rate of change of current population: $\quad \frac{d N}{d t}=k N(t) \quad k=c o n s t a n t$ $k=$ percentage of population increase.

Then, $N(t)=N_{0} e^{k t}$ where $N_{0}=N_{(0)}=$ pppulatim at
-k vs dontling Time:
Set $t_{d}=$ doubling Time $=$ Time it Takes T_{0} double the populatim Assuming $N_{0}>0$, we set $2 N_{0}=N\left(t_{d}\right)=N_{0} e^{k t_{d}}$ (in size)

$$
\begin{aligned}
z & =e^{k t_{d}} \\
\ln z & =k t_{d} \leadsto t_{d}=\frac{\ln 2}{k}
\end{aligned}
$$

Consequence: $N\left(t+t_{a}\right)=N_{0} e^{k\left(t+t_{2}\right)}=N_{0} e^{k t+k t_{d}}$

$$
=(\underbrace{\left(N_{0} e^{k t}\right)}_{=N(t)} e^{k t_{d}}=N(t) e^{\ln 2}=2 N_{(t)}
$$

So it doesn't matter when we start counting. The doubling temp is the same!
EXAMPLE I: The number of bacteria in a culture doubles every hour. How long does it take fr 1000 bacteria To produce 1 billim $=10^{9}$?
Solution: $t_{d}=1$ hoer so $k=\frac{\ln z}{t_{d}}=\ln 2, N_{0}=1000$

$$
\leadsto N_{(t)}=N_{0} e^{k t}=1000 e^{(\ln 2) t}
$$

We need to find t with $10^{9}=10^{3} e^{t \ln 2}$. $\leadsto 10^{6}=e^{t \ln 2}$ Take $\ln : \quad 6 \ln 10=t \ln 2$ so $t=\frac{6 \ln 10}{\ln 2} \approx 15.5$ hours

EXAMPLE 2: In 1970, the world population was 3.6 billim. The Earth weighs. $6586 \cdot 10^{18} \mathrm{mn}$. If the population incuses at a rate of 2% per year \&an avenge persm weighs 120 lbs , when will the weight of all people equal the Earth's weight?
Solution: $k=\frac{2}{100} \& N_{0}=3.610^{9}$ so $N_{(t)}=3.610^{9} e^{\frac{2}{100} t}$
We want t so that $120 N(t)=6586 \cdot 10^{18} \cdot 2000 \quad\left(1 t_{n}=200016\right)$

$$
120 \cdot 3.610^{9} e^{t / 50}=658610^{18} 2 \cdot 10^{3}
$$

So $e^{t / 50}=\frac{6586 \cdot 2 \cdot 10^{21-9}}{120 \cdot 3.6}=\frac{3298}{108} 10^{12}$
$\leadsto \frac{t}{50}=\ln \left(\frac{3298}{108} 10^{12}\right)=\ln (3298)+12 \ln (10)-\ln (108)$
so $t=50(\ln (3298)+12 \ln (10)-\ln (108))=1552.42$ years

