Lecture $X X X I I:$ §8.5 (cit): radioactive decay.
S1. Radioactive Decay:
A characteristic feature of radisactise materials is the decay in radioactive material. We write $X_{(t)}=$ amount of material at times Rate of decay: $\frac{d x}{d t}=-k x$ with $k>0$ decay constant
Solution: $x(t)=x_{0} e^{-k x}$ $X_{0}=$ amount of material at time 0
Note: $X(t) \neq 0$ fr all t if $X_{0} \neq 0$, so radioactere materials NEVER completely decay.

Analog of double time is the half-Time $t_{\frac{1}{2}}$ (time if takes or the substance $\overline{6}$ decay to half of its riginal amount)

$$
x\left(t_{1 / 2}\right)=\frac{1}{2} x_{0} \text { gives } \begin{aligned}
e^{-k t_{1 / 2}} & =\frac{1}{2}=2^{-1} \\
-k t_{1 / 2} & =\ln 2^{-1}=-\ln 2 \\
k t_{1 / 2} & =\ln 2
\end{aligned}
$$

Remark: $x_{\left(t+t_{1 / 2}\right)}=x_{0} e^{-k\left(t+t_{1 / 2}\right)}=\underbrace{x_{0} e^{-k t}}_{x(t)} \underbrace{e^{-k t_{1 / 2}}}_{\frac{1}{2}}=\frac{x(t)}{2}$
So the initial time is inelevant fo computing $t_{1 / 2}$.
Example Cesium 137 decays to 20% in 10 years. What's its half-time? Solution: $x_{0} e^{-k 10}=x_{(10)}=\frac{20}{100} \quad x_{0}=\frac{x_{0}}{5}$ so $e^{-k 10}=\frac{1}{5}$ gives $-k 10=\ln \frac{1}{5}=-\ln 5$ mas $k=\frac{\ln 5}{10}$
So $t_{\frac{1}{2}}=\frac{\ln 2}{k}=\frac{\ln 2}{\frac{\ln 5}{10}}=\frac{10 \ln 2}{\ln 5} \approx 4.3067$ years.

Main application: Radio carbs deting (Libby ~ 1940)

- Carbon 14 is in living things. It starts decaying right after death. It has a half-Time of ~ 5600 years.
- Example: If a piece of old wood has half sadiracturety fum Cabbies as a listing thee has, then it lived abreact 5600 years ago. If it has $\frac{1}{4}$ of radioactivity it lived 11,200 years age, te.
S2 Basics m Trigonometry:

- $\theta=$ massed in digeces between $0^{\circ} \& 360^{\circ}$

- $\theta=$ \qquad radians \qquad $0 \& 2 \pi$
(1 radian $=$ angle To describe an arc of the unit circle of length 1)

$$
\begin{cases}\text { Ana (sects): } \pi r^{2} \frac{\theta}{2 \pi}=\pi r^{2} \frac{\theta}{\pi} \\ \text { Length (arc) : } \theta r=2 \pi r \frac{\theta}{2 \pi}\end{cases}
$$

$$
\begin{cases}x=r \cos \theta & \text { (plan } \\ y=r \sin \theta & \text { coordinates) }\end{cases}
$$

$$
r=\sqrt{x^{2}+y^{2}}
$$

We "redepme $\cos \theta \& \sin \theta$ " in $\cos \theta=\frac{x}{\sqrt{x^{2}+y^{2}}} \& \sin \theta=\frac{y}{\sqrt{x^{2}+y^{2}}}$
$\theta=$ angle between the pritix x axis and the repent joining $(0,0) \&(x, y)$ (coentridiekwise)
Example : $\pi<\tilde{\theta}<\frac{3}{2} \pi$ si $\tilde{x}=r \cos \tilde{\theta}<0$ \& $\tilde{y}=r \sin \tilde{\theta}<0$.
Puisdicity: $\cos (\theta+2 \pi)=\cos (\theta) \quad 4 \sin (\theta+2 \pi)=\sin \theta$.
4 more thing functions $\tan \theta=\frac{\sin \theta}{\cos \theta}, \cot (\theta)=\frac{1}{\tan }=\frac{\cos \theta}{\sin \theta}$ (phiorlicity: π)

$$
\sec \theta=\frac{1}{\cos \theta} \quad \csc (\theta)=\frac{1}{\operatorname{sen} \theta}
$$

(periodicity 2π)
Parity

$$
\left.\begin{array}{ll}
\sin (-\theta)=-\sin \theta \\
\tan (-\theta)=-\tan \theta
\end{array}\right\} \text { ODs }
$$

N在: $y=m x$ in cortesion cordinates becomes
 in plar coordinates
§3. Graphs: Source: Wikipedia
(1) $\sin x$

(2) $\cos x$

(3) $\tan x$

34. Trig Identities
(1)

$$
\begin{aligned}
& \sin ^{2} \theta+\cos ^{2} \theta=1 \quad\left(x^{2}+y^{2}=r^{2} \Leftrightarrow r^{2} \cos ^{2} \theta+r^{2} \sin ^{2} \theta=r^{2}\right) \\
& \tan ^{2} \theta+1=\sec ^{2} \theta \quad\left(=1 / \cos ^{2} \theta\right) \\
& 1+\cot ^{2} \theta=\csc ^{2} \theta \quad\left(=\frac{1}{\sin ^{2} \theta}\right)
\end{aligned}
$$

(2) Addition formulas:
(x) $\left\{\begin{array}{l}\sin (\theta+\varphi)=\sin \theta \cos \varphi+\cos \theta \sin \varphi \\ \cos (\theta+\varphi)=\cos \theta \cos \varphi-\operatorname{sen} \theta \sin \varphi\end{array}\right.$
divide by $\cos \theta \cos \varphi$ both
So $\tan (\theta+\varphi)=\frac{\sin \theta \cos \varphi+\cos \theta \sin \varphi}{\cos \theta \cos \varphi-\operatorname{ten} \theta \sin \varphi}=\frac{\tan \theta+\tan \varphi}{1-\tan \theta \tan \varphi}$
Why (*)? We reed an aside n expmentials and complex numbers (Euler)

- Define i as $\sqrt{-1}$, meaning $i^{2}=-1$ mus add 5 of any negative veal number!
- A complex number is an expression of the from $a+i b$ with a, b in \mathbb{R} (Think of is a olaceholdu)
Thun $e^{a+i b}=e^{a}\left(e^{i b}\right) \quad(z=a+i b \quad a, b$ in \mathbb{R} is a conflex number)
$f_{(x)}=e^{i x}$ satisfies $f^{\prime}(x)=i e^{i x} \quad\left(\right.$ Chain Rule) so $f^{\prime \prime}(x)=i i e^{i x}=-e^{i x}$
Conduce: $f^{\prime \prime}(x)=-f(x)$
Now $\sin x \& \cos x$ also satisfy the same epenatim. They must be elated (equation involves $2^{\text {nd }}$ derivative \& we have 3 solutives)
Now $f(x)=e^{i x} \& \quad g(x)=\alpha \cos x+\beta \sin x$ sols the same differential equation. If $f(0)=\rho(0) \quad \& f^{\prime}(0)=\rho^{\prime}(0)$ they must apse!

$$
f^{\prime}(x)=i e^{i x} \quad \& \quad g^{\prime}(x)=-\alpha \operatorname{sen} x+\beta \cos x
$$

We find $\alpha \&$ \& by convenient evaluation of $e^{i x} \& i t s$ derivative at $x=0$

$$
\begin{aligned}
& 1=e^{0}=\alpha \cos 0+10 \cdot \sin 0=\alpha \\
& i=i e^{0}=-\alpha \sin 0+\beta \cos 0=\beta \text { so } \alpha=1 \\
& \text { so } \beta=i
\end{aligned}
$$

Conclude : $e^{i \theta}=\cos \theta+i \sin \theta$ (Euler's Thurem)
But $e^{i(\theta+\varphi)}=e^{i \theta} e^{i \varphi}=(\cos \theta+i \operatorname{sen} \theta)(\cos \varphi+i \operatorname{sen} \varphi)$

$$
\text { Loans } \left.d \text { Exp }=\cos \theta \cos \varphi+i \cos \theta \sin \varphi+i \operatorname{sen} \theta \cos \varphi+i^{i}\right) \operatorname{sen} \theta \sin \varphi
$$

$$
\text { repoup }=(\cos \theta \cos \varphi-\operatorname{sen} \theta \sin \varphi)+i\left(\cos \theta \operatorname{sen} \ddot{\varphi}^{-1}+\operatorname{sen} \theta \cos \varphi\right)
$$

Since $e^{i(\theta+\varphi)}=\cos (\theta+\varphi)+i \operatorname{sen}(\theta+\varphi)$ we recover the 2 addition formulas at once!

