Lecture XXXIV: 59.6 Simple Harmonic Motim.
TODAY: Well solve differential equatimes modeling:
(1) the motions of vibrations producing sound
(2) oscillations r waves of periodic motions.

E1 Simple Harmonic Motion:
Definition: If an object r a particle mores back \& froth in a straight line (say the x-axis), so that the free repueied T_{0} move it back T_{0} equilibrium $(x=0)$ is papprtinal to the distance away from equilibrium, we say we hare a simple harmonic motion (SHM)

gives $\frac{d^{2} x}{d t^{2}}=-\frac{k}{m} x(t)$

$$
\begin{aligned}
& F(t)=m a(t)=m \frac{d^{2} x}{d t^{2}}=-k x(t) \\
& \text { (restorative frae) } \text { fr } k>0 \\
& \text { (if } k=0, \text { no } \\
& \text { movement) }
\end{aligned}
$$

Now : $k, m>0$ so $c=\frac{k}{m}>0$ we write $c=a^{2}>0$ forme a, to enseese it is proitere!
Conclusion: The equation governing the SHM is
(*) $\frac{d^{2} x}{d t^{2}}+a^{2} x(t)=0$ fr $a>0$ (toque 2)
Initial anditions: $\begin{cases}x\left(t_{0}\right)=x_{0} & \text { (initial position) } \\ x^{\prime}\left(t_{0}\right)=v_{0} & \left.\text { (initial velocity, Typically } v_{0}=0\right)\end{cases}$
EXAMPLE: $a=1$ gives $x^{\prime \prime}+x=0$ mas 2 building blocks for whectines namely: $\sin t ~ \& \cos t . \quad$ General solution: $x=\alpha \sin t+\beta \cos t$ (α, β parameters)

Theorem: The solutivis To the SHM equation (*) ane of the from:
$x_{(t)}=A \sin (a t+b)$ for ma a, b in \mathbb{R}
Names: $|A|=$ amplitude

- $T=\frac{2 \pi}{a}=$ pried $l=$ smallest time it takes to ceteen $\overline{\text { son a }}$

Indeed, $x(t+T)=A \operatorname{sen}\left(a(t+T)^{\text {given priming. }}+b\right)=A \sin (a t+b+2 \pi)$

$$
=A \sin (a t+b)=x(t)
$$

- $f=\frac{1}{T}=\frac{a}{2 \pi}=$ frequency (= number of cycles per second)

Note: By construction, the movement oscillates between $-|A| \&|A|$

If takes $\frac{2 \pi}{a}$ seconds T_{0} go over the cycle one.

Why? We will give 2 arguments:
(1) Write $\frac{d^{2} x}{d t^{2}}=a(t)=\frac{d v}{d t}$ \& us Chain Rule on $v=v(x)$

$$
\frac{d v}{d t}=\frac{d v}{d x} \cdot \frac{d x}{d t}=\frac{d v}{d x} \cdot v \quad \text { (as we did fr Escape Velority }
$$

(SHM) epuatime $\frac{d^{2} x}{d t^{2}}+a^{2} x=0$ becomes:

$$
\frac{d r}{d x} v+a^{2} x=0
$$

We can solve this sis separation of variables:

$$
\begin{aligned}
d v \cdot v & =-a^{2} x d x \\
\int v d v & =\int-a^{2} x d x \\
\frac{v^{2}}{2} & =\frac{-a^{2} x^{2}}{2}+C
\end{aligned}
$$

Conclude: $\quad v^{2}+a^{2} x^{2^{2}}=2 C \geqslant 0 \quad$ is constant

Next, we use the initial conditions T determine C \& so v :
At $t=t_{0}$ we est $v_{0}^{2}+a^{2} x_{0}^{2}=2 C$
So

$$
\begin{aligned}
v^{2}(x) & =v_{0}^{2}+a^{2} x_{0}^{2}-a^{2} x^{2}=v_{0}^{2}+a^{2}\left(x_{0}^{2}-x\right) \\
& =a^{2} \underbrace{(\underbrace{\left(\frac{v_{0}}{a}\right)^{2}+x_{0}^{2}}_{0}-x^{2}) \quad \leadsto) x \operatorname{canost} \text { exceed }|A|}_{=: A^{2}} \begin{array}{l}
\left(v^{2}=a^{2}\left(\Lambda^{2}-x^{2}\right) \geqslant 0\right)
\end{array}
\end{aligned}
$$

Then $\frac{d x}{d t}=v= \pm a \sqrt{A^{2}-x^{2}}$ (sign depends on the direction!)
Once again, we can use separation of variables to solve for x :

$$
\begin{aligned}
\frac{d x}{\sqrt{A^{2}-x^{2}}} & = \pm a d t \\
\int \frac{d x}{\sqrt{A^{2}-x^{2}}} & =\int \pm a d t= \pm a t+b
\end{aligned}
$$

(LHS) con be computed by substitution $u=\frac{x}{A}$

$$
\begin{aligned}
& \int \frac{d x}{\sqrt{A^{2}-x^{2}}}=\int \frac{d x}{\sqrt{A^{2}\left(1-\left(\frac{x}{A}\right)^{2}\right)}}=\int \frac{d u}{\sqrt{u}=\frac{x}{A}}=\arcsin (u)=\arcsin \left(\frac{x}{A}\right) \\
& d u=\frac{d x}{A}
\end{aligned}
$$

Conclude: $\operatorname{arc} \sin \left(\frac{x}{A}\right)= \pm a t+b$ mas $x=A \sin (\pm a t+b)$

- If $v>0$, then $x=A \sin (a t+b)$
- If $v<0$, then $x=A \sin (-a t+b)=(-A) \sin (a t-b)$
$G \sin (-\omega)=-\sin (\omega)$
So the sign of A depends m the dinction of the movement, but the frumela for $x(t)$ looks the same in both siteatims.
(2) For sen $2^{\text {nd }}$ approch we need the following claim:

CLAIIT: Any solution To $(*)$ has the from $x(t)=\alpha \sin (a t)+\beta \cos (a t)$ Since we don't want the Tisial solution $X(t) \equiv 0$, we can assume either $\alpha \pi \beta \neq 0$.

We set $A=\sqrt{\alpha^{2}+\beta^{2}}>0$, so the print $\left(\frac{\alpha}{A}, \frac{\beta}{A}\right)$ lies on the unit circle

Using polar coordinates, we can find b
with

$$
\frac{\alpha}{A}=\cos b \quad \& \quad \frac{\beta}{A}=\sin b
$$

Conclude:

$$
\begin{aligned}
x(t) & =\alpha \sin (a t)+\beta \cos (a t) \\
& =A\left(\frac{\alpha}{A} \sin (a t)+\frac{\beta}{A} \cos (a t)\right) \\
& =A(\cos b \sin (a t)+\sin b \cos (a t)) \\
& =A \sin (a t+b)
\end{aligned}
$$

Note: The sly thing we need is $A \neq 0$. This expressing will also we a solution to (SHM) even if $A<0$.

Key: $A=\sqrt{\alpha^{2}+s^{2}}$ if $X_{(t)}=\alpha \sin (a t)+\Delta \cos (a t)$ is a Solution $T_{0}(S H M) \leadsto T=\frac{2 \pi}{a} \& f=\frac{1}{T}=\frac{a}{2 \pi}$
§2. An alternative solutix:
Pappsition: Any solution to $y^{\prime \prime}+a^{2} y=0$ fo $a \neq 0$ has the from

$$
y(t)=\alpha \sin (a t)+\beta \cos (a t)
$$

Q: Why? We argue in 4 steps
STEP 1: If $f_{(}(t), g(t)$ are solutions \& α, β are real members, $y_{(t)}=\alpha f(t)+\beta g(t)$ is also a solution. (Note $\sin (a t) \&$ cos (at) This is easy T_{0} check: an solutions)

$$
\begin{aligned}
y^{\prime}=\alpha f^{\prime}+\beta g^{\prime} \leadsto y^{\prime \prime} & =\alpha f^{\prime \prime}+\beta g^{\prime \prime} \\
+a^{2} y & =a^{2} \alpha f+a^{2} \beta g \\
y^{\prime \prime}+a^{2} y & =\alpha(\underbrace{f^{\prime \prime}+a^{2} f}_{=0})+\beta(\underbrace{g^{\prime \prime}+a^{2} g}_{=0})=0
\end{aligned}
$$

STEP 2 : If $y=f(t)$ is a solution, then $a^{2} f_{(t)}{ }^{2}+\left(f^{\prime}(t)\right)^{2}$ is acmstant.
Why? Check that $h(t)=a^{2} f_{(t)}^{2}+\left(f_{(t)}^{\prime}\right)^{2}$ has derivatives 0 .

$$
\begin{aligned}
\frac{d}{d t}\left(a^{2} f^{2}(t)+\left(f^{\prime}(t)\right)^{2}\right)=a^{2} 2 f(t) f^{\prime}(t)+2 f^{\prime} \cdot f^{\prime \prime} & =2 f^{\prime}(\underbrace{a^{2} f+f^{\prime \prime}}_{=0}) \\
& =0 .
\end{aligned}
$$

STEP 3: If $y(t)$ is a solution \& $y(0)=y^{\prime}(0)=0$, then $y_{(t)}=0$ poll.
Why? We use STEP 2 : $a^{2} y(t)^{2}+\left(y^{\prime}(t)\right)^{2}=$ constant \& we get the constant fum sitting $t=0$. We get $a^{2} \cdot 0^{2}+0^{2}=0$.
$\begin{aligned} & \text { So } a^{2} \underbrace{y^{2}}+\underbrace{\left(y^{\prime}\right)^{2}}_{\geqslant 0}=0 \quad \text { This free } a y(t)=0 \& y^{\prime}(t)=0 \\ & \geqslant 0 \geqslant 0 \text { Since } a \neq 0 \text {, we get } y(t)=0 \text { frill } t\end{aligned}$
STEP 4: Pick a solution $y(t)$ \& write

$$
f(t)=\underbrace{y(t) \underbrace{\frac{-1}{a} y^{\prime}(0)}_{\text {Solution by STEP 1 }} \sin (a t)-\underbrace{y(0)}_{=B} \cos (a t)}_{\text {solution by STEPI }}
$$

Now $f^{\prime}(t)=y^{\prime}(t)-\frac{1}{a} y^{\prime}(0) \cos (a t) a-y(0)(-\sin (a t) \cdot a)$

$$
=y^{\prime}(t)-y^{\prime}(0) \cos (a t)+a y(0) \sin (a t)
$$

In particular $f(0)=y(0)-\frac{1}{a} y^{\prime}(0) \sin (0)-y(0) \cos (0)$

$$
\begin{aligned}
& =y(0)-0-y(0) \cdot 1=0 \\
f^{\prime}(0) & =y^{\prime}(0)-y^{\prime}(0) \cos (0)+9 y(0) \sin (0)=0 .
\end{aligned}
$$

By STEP 3 , we get $f(t)=0 \quad$ (solution, with Finial initial conditions)

Conclude: $y(t)=\frac{\sqrt{a} y^{\prime}(0)}{=\alpha} \sin (a t)+\sqrt{y(0)} \cos (a t)$
Exercise Find the amplitecle \& feqpeency of the SHM of a particle with Trajectory $x(t)=3$ sen $2 t+4 \cos 2 t$. Determine its maximal velocity.
Solution: Recall: we reed to write $x(t)=A \sin (a t+b)$
Differential equatim satisfied by $X(t)$ is $X^{\prime \prime}(t)+a^{2} X(t)=0$ Check the given tRajectory solves this:

$$
\begin{aligned}
& x^{\prime}=6 \cos 2 t+8(-\sin 2 t) \\
& x^{\prime \prime}=-12 \sin 2 t+16(-\cos 2 t)=-4(3 \sin 2 t+4 \cos 2 t) \\
&=-4 x
\end{aligned}
$$

So $a^{2}=4$. Take $a=2$
$\operatorname{mpriod}: T=\frac{2 \pi}{a}=\pi \quad \& \quad$ \& π ency: $f=\frac{1}{T}=\frac{1}{\pi}$
To find $A \& b$ we need to pick sample prints:

$$
\begin{aligned}
& t=0 \text { gives: } \quad X(0)=3 \cdot 0+4 \cdot 1=4=A \sin b \\
& t=\frac{\pi}{4} \quad x\left(\frac{\pi}{4}\right)=31+4 \cdot 0=3 \\
& =A \sin \left(\frac{2 \pi}{4}+b\right)=A \sin \left(\frac{\pi}{2}+b\right)=A \cos b
\end{aligned}
$$

So $\left.\begin{array}{rl}A \sin b & =4 \\ A \cos b & =3\end{array}\right\} \leadsto \begin{aligned} & A^{2}=A^{2}\left(\sin ^{2} b+\cos ^{2} b\right)=4^{2}+3^{2}=25 \\ & \text { so } A=+5\end{aligned}$
\leadsto Amplitucle: $|A|=5 . \quad$ (Approach (2): $A=\sqrt{\alpha^{2}+\beta^{2}} \leadsto 5$)

- Velocity: $x^{\prime}=6 \cos 2 t+8(-\sin 2 t)$

Also $\quad x^{\prime}=2 A \cos (2 t+b) \rightarrow$ maximal $x^{\prime}=|2 A|$
In general: Maximal velocity f is SHM $x(t)=A \sin (a t+b)$
is $a|A|$ since $x^{\prime}(t)=a A \cos (a t+b)$

