Lecture XXXV: 59.6 Simple Harmonic Motim IT. The pendulum
Recall: Differential eperation governing simple harmonic motion is (SHA) $\quad x^{\prime \prime}(t)+a^{2} x(t)=0 \quad$ fr $a>0$
Initial conditions: $\quad x\left(t_{0}\right)=x_{0} \quad$ (initial position)

$$
x^{\prime}\left(t_{0}\right)=v_{0} \quad \text { (initial velocity, typically } 0 \text {) }
$$

Two way of writing down solutions:
METHOD 1: $x(t)=A \sin (a t+b)$ where A, b are parameters

$$
f=\frac{1}{T}=\text { fupuency }
$$

METHOD 2: $X(t)=\alpha \operatorname{sen}(a t)+\beta \cos (a t)$ where α, β an parameters
Connection: $A=\sqrt{\alpha^{2}+s^{2}}$
Q: Graph of $x(t)$?

If $A<0$ notate about x-axis:

If $A=0$, we pt $x_{(t)}=0 \quad(b$ ring splutim!)
Remark: $X_{(t)}=A \sin (a t+b)=A \cos \left(a t+b-\frac{\pi}{2}\right) \quad\left(\right.$ because $\left.\sin (u)=\cos \left(u-\frac{\pi}{2}\right)\right)$

S1 Geometric perspective:
Assume $A>0$ \& thatapartide P mores around a circle of radices A with constant angular velocity: $\frac{d \theta}{d t}=a \frac{\mathrm{rad}}{\mathrm{se}} \quad(a=$ constant, $a>0)$
Then $\theta=a t+b$ by integration.
So in polar coordinates P conespands $T_{0}(A, \theta)$
In cartesian coordinates $P=(x, y)$ with

$$
\begin{aligned}
& x=A \cos \theta=A \cos (a t+b) \\
& y=A \sin \theta=A \sin (a t+b)
\end{aligned}
$$

So: the projection of the trajectory to the y-axis describes (SHM)
§2. Examples:
(1) SHM fr a Spring:

Assume no air usistance. (mglegible) Put an object of mass m at the and of a spring and lit it stitch until it maches equilibrum Pull the spring away pore the ceiling \& let go of it $\left(s_{0} v_{0}=0\right)$

Newton's Law: $F=m a_{(t)}=m \frac{d^{2} x}{d t^{2}}=-k x$ where k is spurning constant $\quad(k>0)$
So $\frac{d^{2} x}{d t^{2}}=-\frac{k}{m} x=-a^{2} x$ with $a=\sqrt{\frac{k}{m}}$
Initial conditions $\left\{\begin{array}{l}x(0)=x_{0} \\ \frac{d x}{d t}(0)=v_{0}=0\end{array}\right.$
We know $x(t)=\alpha \sin (a t)+\beta \cos (a t)$

So $x^{\prime}(t)=a \alpha \cos (a t)-\beta a \sin (a t)$ sirs

$$
x^{\prime}(0)=0=a \alpha \cos (0)-0=a \alpha \quad \text { so } \alpha=0
$$

Then $x(t)=\beta \cos (a t)$
Now $x_{(0)}=x_{0}$ gives $\beta=x_{0}$.
Conclude: $\quad x(t)=x_{0} \cos \left(\sqrt{\frac{k}{m}} t\right)=x_{0} \sin \left(\sqrt{\frac{k}{m}} t+\frac{\pi}{2}\right)$
Amplitude $=|A|=x_{0}>0 \quad$ (initial protium)
Pried: $T=\frac{2 \pi}{a}=2 \pi \sqrt{\frac{m}{k}}$
Frequency: $f=\frac{1}{T}=\frac{1}{2 \pi} \sqrt{\frac{h}{m}}$
Observations: If the stiffness k of the spring incuases, then the frequency incuases

- If the mass m increases, then the frupuency deceases, These observations ague with the expectations we have based in experimental evidence.
(2) Hole in the Earth:
- We virus the Earth as a sphene of radius $R=4000 \mathrm{mi}$.
- We bore a kennel straight through the center of the Earth fum with to south pres
- We drop a body of mass m into the kennel.

GOAL: Find the motion of the body induced by gravity

.The free of prasily acts as if all the Earth was concentrated at its center

Model : $F_{(t)}=m x_{(t)}^{\prime \prime}=-k x$ gives $x^{\prime \prime}+\frac{k}{m} x=0$
At the surface $F=-m g=-k R \quad(x=R)$ so $\frac{k}{m}=\frac{g}{R}$ \leadsto Equation is $x^{\prime \prime}+\frac{g}{R} x=0$ (independent of the mass!)
Condusin: The object will exhibit SHM (if we disugard air friction,

$$
\text { - } a=\sqrt{\frac{g}{R}}
$$

- Prised $: \frac{2 \pi}{a}=2 \pi \sqrt{\frac{R}{g}} \approx 89$ minutes $\quad\left(\begin{array}{l}R \sim 4000 \mathrm{~m} \\ g \sim 32 \mathrm{ft} / \mathrm{s}^{2} \\ 1 \mathrm{mi}=5280 \mathrm{ft}\end{array}\right)$
- Time to get t_{0} the center: $\frac{89}{4}=22$ minutes

Q Amplitude?
A: Amplitude = radius of the Earth
Why?

$$
\begin{array}{ll}
x(t)=A \sin (a t+b) \\
x(0)=A \sin b=R
\end{array} \quad \begin{aligned}
& x^{\prime}(t)=a A \cos (a t+b) \\
& x^{\prime}(0)=a A \cos b
\end{aligned}
$$

But $x^{\prime}(0)=0$ free $\cos b=0$ so $\sin b= \pm 1$.
So $\quad R=|R|=|A \sin b|=|A| \quad$ (as in the spring example!)

1) The will not be the if $x^{\prime}(0) \neq 0$.
(3) Pendulum :

Setup: a bob (weight) suspended at the end of a light string of length L
We allow the bob To switch back \& froth under the actin of gravity.

$$
S(t)=L \theta(t)
$$

$F=m g$ is not in the diectim of the movement. Fr this we need to split
F into 2 comprents (1) $F_{\text {Tan }}=$ comprent tangential to the movement ${ }^{35}$ (S)
(2) $F_{\text {norm }}=\square$ perpendicular

$$
F_{T_{a n}}=-F \sin \theta=-m g \sin \theta
$$

m Equation becomes $\frac{d^{2} s}{d t^{2}}=\frac{d^{2}}{d t^{2}}\left(L \theta_{(t)}\right)=L \frac{d^{2} \theta}{d t^{2}}$
Newton's Law : $\quad F_{\text {Tan }}=m \frac{d^{2} s}{d t^{2}}=m L \theta^{\prime \prime}$

$$
-m g \sin \theta
$$

Conclusion: $\quad \theta^{\prime \prime}+\frac{g}{L} \sin \theta=0$
This is not the differential equation for (SHM) but it is run dose to it when θ is closed to 0 since $\lim _{\theta \rightarrow 0} \frac{\sin \theta}{\theta}=1$

Near 0, the equation is close to $\theta^{\prime \prime}+\frac{g}{L} \theta=0$, so we get $\theta=A \sin \left(\sqrt{\frac{g}{L}} t+b\right)$ with phird $T=2 \pi \sqrt{\frac{L}{g}}$. ! This is ONLY an approximation! In reality, the period depends on the amplitude. This explains the "circular enos" in pendulum clocks. (In a freely swinging pendulum, following a cinclllar path under the influence of gravity take longer to traverse a large are than a small arc)

