Lecture XXXVI: $\xi_{10.1}$ The basic formulas
\$10.2 The method of substitution
\$10.3 Certain trigonometric integrals
81. The Basic Formulas:

Definition: An elementary function is one built hum $x^{a}, e^{x}, \ln (x)$, $\sin (x), \cos (x)$, $\arcsin (x)$, arctan (x) \& constants built ham $=$ add, weltijly, divide, substract \& compose.
Example: $\arctan \left(\frac{\ln \left(x^{2}+\cos ^{2}(x)\right)}{e^{x}+\sin \sqrt{x^{2.5}+1}}\right)+1$
Note : (1) Simple rules for differentiation of building blocks + Uam / Product/Quotent Rules give easy ways To determine the derisatiess of dementary functions. Moore, these derivatieses are once again elementary functions.
(2) Integration is more subtle: there is NO systematic way to do it 4 the output need not be an elementary function!
m We have a recognitim Problem: (1) what method should we use?
(2) how to apply it?

Example (A_{x} ppendix A9)
$L_{i}(x)=\int_{2}^{x} \frac{d t}{\ln t} \& \int_{0}^{x} e^{-t^{2}} d t$ ar int dementary functions
(3) I5 basic formulas to use (pages 335 \& 336 of textbook \& handout)
\$2. Method of substitution:
Substitution is the analog of the Chain Rule fr integration as acognitim problem!
Substitution Rule:

$$
\begin{aligned}
& \int_{a}^{t} f^{\prime}(g(t)) g^{\prime}(x) d x=\left.\int_{g(a)}^{g(b)} f^{\prime}(u) d u \underset{(F T c)}{=} f(u)\right|_{g(a)} ^{s(b)} \\
& u=g(t) \\
& d u\left.=s^{\prime}(t) d t \quad t=b\right) u=s(a) \\
&=f(g(b))-f(g(a))
\end{aligned}
$$

EXAMPLES (1) $\begin{aligned} & \int_{0}^{2} x e^{-x^{2}} d x=\int_{0}^{-4} e^{u} \frac{d u}{-2}=\frac{1}{2} \int_{-4}^{0} e^{u} d u=\frac{1}{2}\left(\left.e^{u}\right|_{-4} ^{0}\right)^{(36(2)} \\ &=\frac{1}{2}\left(1-e^{-4}\right) \\ & d u=-2 x d x \rightarrow u=0 \\ & x=2 \rightarrow u=-4\end{aligned}$
(2)

$$
\begin{aligned}
\int_{0}^{\pi / 2} \frac{\cos x d x}{\sqrt{1+\operatorname{sen} x}} & =\int_{\substack{d \\
u=1+\sin x}}^{2} \frac{d u}{\sqrt{u}}=\left.2 u^{x=0} \rightarrow \quad\right|_{1} ^{u=1} \\
d u & =\cos x d x \quad \begin{array}{c}
1 / 2 \\
x=\frac{\pi}{2} u \infty \\
u=2 \\
u
\end{array}
\end{aligned}
$$

Note : substituing $\cos x$ or $\sqrt{1+\sin x}$ won't work!
(3)

$$
\begin{aligned}
& \int_{e}^{e^{2}} \frac{d x}{x \ln x}=\int_{\substack{u=\ln x \\
u \\
d u=\frac{d x}{x} \\
x=e \\
x=2 m u=2}}^{2} \frac{d u}{u}=\left.\ln u\right|_{1} ^{2}=\ln 2-\ln 1=\ln 2 . \\
& \sqrt{2} \quad
\end{aligned}
$$

(4)

$$
\begin{aligned}
& d u=\frac{d x}{x} \quad x=e^{2} m u=2 \\
& \int_{0}^{\sqrt{2}} \frac{d x}{\sqrt{9-4 x^{2}}}=\int_{0}^{d u=\frac{d x}{r_{2}^{2}}} \frac{d x}{\sqrt[3]{1-\left(\frac{2 x}{3}\right)^{2}}}={\underset{c}{u=\frac{2}{3} x}}_{x=e m u=2}^{\frac{1}{3}} \int_{0}^{\frac{2}{3} \sqrt{2}} \frac{d x}{\sqrt{1-u^{2}}}=\left.\frac{1}{3} \arcsin (u)\right|_{0} ^{\frac{2}{3} \sqrt{2}} \\
& d u=\frac{2}{3} d x \quad x=\sqrt{2} \leadsto u=\frac{2}{3} \sqrt{2}<1
\end{aligned}
$$

(5)

$$
\begin{aligned}
& =\operatorname{arc} \sin _{\Gamma_{2}}\left(\frac{2}{3} \sqrt{2}\right)-\arcsin 0=\arcsin { }^{3}\left(\frac{2 \sqrt{2}}{3}\right) \text {; }
\end{aligned}
$$

$$
\begin{aligned}
& d u=-\frac{8}{9} x d x \quad x=1 m u=\frac{1}{9} \\
& =\frac{3}{4}\left(1-\frac{1}{3}\right)=\frac{1}{2}
\end{aligned}
$$

§3. Cetain Tignometric examples:
GOAL: Find a method fr integrating these 3 functions:
(1) $\int \sin ^{m}(x) \cos ^{n}(x) d x$
(2) $\int \tan ^{m}(x) \operatorname{scc}^{n}(x) d x$
fr $m, n \geqslant 0$ integers.
(3) $\int \cot ^{m}(x) \csc ^{n}(x) d x$

Why? $\quad \frac{d \operatorname{sen} x}{d x}=\cos x \quad \frac{d \tan x}{d x}=\sec ^{2}(x) \quad \frac{d \cot (x)}{d x}=-\csc ^{2}(x)$
m Answers to (1), (2), (3) will depend m the parity of $m \& n$
EXAMPLES: (1) $(n=1) \int \operatorname{sen}^{m}(x) \cos x d x \underset{u^{d}=\sin x}{=} \int^{m} d u=\frac{(\sin x)^{m+1}}{m+1}+C$
(2) $(n=2) \int \tan ^{m}(x) \sec ^{2}(x) d x=\int_{\substack{u=\tan x \\ d u=\sec ^{2} x d x}} u^{m} d u=\frac{\tan ^{m+1}(x)}{m+1}+C$
(3) $\quad(n=2) \int \cot ^{m}(x) \csc ^{2}(x) d x \underset{\substack{u=\cot x \\ d u=-\csc ^{2}(x) d x}}{ }-\int u^{m} d u=-\frac{\cot ^{m+1}(x)}{m+1}+C$

Q: What about other values of n ?
A We'll show the answer fr (1). The other 2 are andogses. (next lecture)
We analyze 2 cases : even/ rod combinations:
CASE A: lither $m \underline{r} n$ are ODD (eg $1,3,5,2 \ldots$)
Trick: Use trig identities to turn integrand into sums of functions of the form (1) $\cos ^{\ell}(x) \operatorname{sen}(x)$ (if m is $0 \Delta \Delta$) II (2) $\operatorname{sen}^{\ell}(x) \cos (x)$ (if n is $0 \Delta \Delta$)

Why is this good? These tums can be intequatid by a simple substitetim!
How? We show it fr (2) \& then fr (1):

- If n is ODS we can write n as $n=2 k+1$ fr omer integer $k \geqslant 0$.

Then $\cos ^{n} x=\cos ^{2 k+1}(x)=\cos (x) \cos ^{2 k}(x)=\cos (x)\left(\cos ^{2}(x)\right)^{k}=\cos (x)\left(1-\sin ^{2} x\right)^{k}$
Then, the Binomial Thuoum allows us T_{0} expand $\left(1-\operatorname{sen}^{2} x\right)^{k}$:

$$
\left(1-\sin ^{2} x\right)^{k}=1-k \sin ^{2} x+\left(\frac{k}{2}\right) \sin ^{4} x-\cdots+(-1)^{k} \sin ^{2 k}(x)
$$

Conclude : $\sin ^{m}(x) \cos ^{n}(x)=\sin ^{2 n}(x) \cos ^{2 k+1}(x)=\sum_{j=0}^{k}(-1)^{j}\binom{k}{j} \underbrace{\sin ^{2 j+m}(x)^{\cos x}}_{\text {easy integration }}$

- If m is $O D D$, wite $m=2 k+1$. We esters the voles of $\sin \&$ cs: ($u=\sin x$

$$
\sin ^{2 k+1}(x) \cos ^{n}(x)=\sum_{j=0}^{k}(-1)^{j}\binom{k}{j} \underbrace{\cos ^{2 j+n}(x) \sin x}_{\text {easy integration by substitution } u=\cos x} \text {. }
$$

EXAMPLES:

$$
\begin{aligned}
(\underline{m}=3, & n=0)
\end{aligned} \begin{aligned}
& \int \sin ^{3} x d x=\int \sin x \sin ^{2} x d x=\int \sin x\left(1-\cos ^{2} x\right) d x \\
= & \int \operatorname{sen} x d x-\int \sin x \cos ^{2} x d x=-\cos x+\frac{\cos ^{3} x}{3}+C
\end{aligned}
$$

$$
\begin{aligned}
(m & =2, n=5) \int \sin ^{2}(x) \cos ^{5} x d x=\int \sin ^{2} x \cos (x) \cos ^{4}(x) d x=\int \sin ^{2} x \cos x\left(1-\sin ^{2} x\right)^{2} d x \\
& =\int \sin ^{2} x \cos x\left(1+\sin ^{4} x-2 \sin ^{2} x\right) d x=\int \cos x \sin ^{2} x d x+\int \cos x \operatorname{sen}^{5} x d x \\
& -2 \int \cos x \sin ^{4} x d x
\end{aligned}
$$

CASE B : both m \& n are EVEN (eg $0,2,4,6 \ldots$)
Write $m=2 k$ \& $n=2 l$ fr $k, l \geqslant 0$ integers.
Use half-angle fromulas!

$$
\left\{\begin{array} { l }
{ \operatorname { c o s } ^ { 2 } x + \operatorname { s e n } ^ { 2 } x = 1 } \\
{ \operatorname { c o s } ^ { 2 } x - \operatorname { s i n } ^ { 2 } x = \operatorname { c o s } (2 x) }
\end{array} \leadsto \left\{\begin{array}{l}
2 \cos ^{2} x=1+\cos 2 x \\
2 \sin ^{2} x=1-\cos 2 x
\end{array}\right.\right.
$$

(Add 2 equs)
(Substract 2eqns)
IDEA: $\cos ^{2 k}(x) \sin ^{2 l}(x)=\left(\frac{1+\cos 2 x}{2}\right)^{k}\left(\frac{1-\cos 2 x}{2}\right)^{l}$
m Expand \& use further half-augle fromulas until me of the exprents is ODA or 0 . Then, we can use CASE A. \& we get a constant, which we know how to integrate.

EXAMPLES:
(1) $\int \cos ^{4} x d x=\int\left(\cos ^{2} x\right)^{2} d x=\underset{\substack{1 / \text { angle }}}{\int}\left(\frac{1+\cos 2 x}{2}\right)^{2} d x$ $=\int \frac{1}{4}+\frac{1}{4} 2 \cos 2 x+\frac{1}{4} \cos ^{2} 2 x d x=\frac{1}{4} x+\frac{\operatorname{sen} 2 x}{4}+\frac{1}{4} \int \cos ^{2}(2 x) d x$
constant $\cos V$

$$
\begin{aligned}
& \int \cos ^{2} 2 x d x=\frac{1}{2} \int \cos ^{2} u d u=\frac{1}{\bar{b}} \frac{1}{2} \int\left(\frac{1+\cos 2 u}{2}\right) d u=\frac{1}{4} \int_{\substack{1 / 2 a n g l e}} 1+\cos 2 u d u \\
& =\frac{1}{4}\left(u+\frac{\sin 2 u}{2}\right)=\frac{1}{4}\left(2 x+\frac{\sin 4 x}{2}\right)=\frac{x}{2}+\frac{\sin 4 x}{8}
\end{aligned}
$$

Conclucle $\int \cos ^{4} x d x=\frac{x}{4}+\frac{\operatorname{sen} 2 x}{4}+\frac{x}{2}+\frac{\operatorname{sen} 4 x}{8}+C=\frac{3}{4} x+\frac{\sin 2 x}{4}+\frac{\sin 4 x}{8}+C$

$$
\text { (2) } \begin{aligned}
& \int \cos ^{2} x \sin ^{2} x d x=\int\left(\frac{(1+\cos 2 x}{2}\right)\left(\frac{1-\cos 2 x}{2}\right) d x=\frac{1}{4} \int(1+\cos u)(1-\cos u) \frac{d u}{2} \\
= & \frac{1}{8} \int 1-\cos ^{2} u d u=\frac{1}{8} \int 1-\frac{1+\cos 2 u}{2} d u=\frac{u}{8}=-\frac{1}{32} \sin 2 u+C=\frac{x}{4}-\frac{\sin (4 x)}{32}+C
\end{aligned}
$$

