Lecture XXXVII: 310.3 (emt) Certain tiggomithic integrals §10.4 Trigonometric substitutions
Recall: Last time, we discussed integration as a recognition problem (what §1. Catain Tigsumentric examples: method T_{0} was ??

GOAL: Find a method fr integrating these 3 functions:
(1) $\int \sin ^{m}(x) \cos ^{n}(x) d x$
(2) $\int \tan ^{m}(x) \sec ^{n}(x) d x$
fr $m, n \geqslant 0$ integers.
(3) $\int \cot ^{m}(x) \csc ^{n}(x) d x$

Last time: we solved (1) defending n parity of $m \& n \quad(2$ cases):
Key: $d(\sin x)=\cos x d x$ \& $d(\cos x)=-\sin (x) d x$ ms need $O \Delta \Delta$ powers!
CASE A : either $m \underline{\pi} n$ are ODD (eg $1,3,5,7 \ldots$)
Trick: Use trig identities to tum integrand into sums of functions of the from (1) $\cos ^{\ell}(x) \operatorname{sen}(x)$ (if m is $0 \Delta \Delta$) Iㅡ (2) $\operatorname{sen}^{\ell}(x) \cos (x)$ (if n is $0 \Delta \Delta$)

Why is this good? These tums can be integrated by a simple substitution!
How? We show it fr (2) \& then fr (1):

- If n is ODS, we can write n as $n=2 k+1$ fr spue integer $k \geqslant 0$.

Then $\cos ^{n} x=\cos ^{2 k+1}(x)=\cos (x) \cos ^{2 k}(x)=\cos (x)\left(\cos ^{2}(x)\right)^{k}=\cos (x)\left(1-\sin ^{2} x\right)^{k}$
Then, the Binomial Theorem allows us $T_{0} \operatorname{expand}\left(1-\operatorname{sen}^{2} x\right)^{k}$:

$$
\left(1-\sin ^{2} x\right)^{k}=1-k \sin ^{2} x+\left(\frac{k}{2}\right) \sin ^{4} x-\cdots+(-1)^{k} \sin ^{2 k}(x)
$$

Conduce : $\sin ^{m}(x) \cos ^{n}(x)=\sin ^{2 n}(x) \cos ^{2 k+1}(x)=\sum_{j=0}^{k}(-1)^{j}\binom{k}{j} \underbrace{\sin ^{2 j+m}(x)^{j o s} x}_{\text {easyintegnation }}$

- If m is ODD, wite $m=2 k+1$. We ceserse the voles of sin \& cos: $(u=\sin x$
substitution!)

$$
\sin ^{2 k+1}(x) \cos ^{n}(x)=\sum_{j=0}^{k}(-1)^{j}\left(\frac{k}{j}\right) \underbrace{\cos ^{2 j+4}(x) \sin x}_{\text {easy integration by substitution } u=\cos x \text {. }}
$$

CASE B : both m \& n are EVEN (eg $0,2,4,6 \ldots$)
Write $m=2 k$ \& $n=2 l$ fo $k, l \geqslant 0$ integers.
Use half-angle fromulas!

$$
\left\{\begin{array}{l}
\cos ^{2} x+\operatorname{sen}^{2} x=1 \\
\cos ^{2} x-\sin ^{2} x=\cos (2 x)
\end{array} \quad m \rightarrow \begin{array}{ll}
2 \cos ^{2} x=1+\cos 2 x \\
2 \operatorname{sen}^{2} x=1-\cos 2 x
\end{array} \quad \begin{array}{l}
\text { (Add z equs) } \\
\text { (Substract } 2 \text { equs) }
\end{array}\right.
$$

IDEA: $\cos ^{2 k}(x) \sin ^{2 l}(x)=\left(\frac{1+\cos 2 x}{2}\right)^{k}\left(\frac{1-\cos 2 x}{2}\right)^{l}$ m Expand \& use further holf-auple formulas until me of the exprents is ODA or 0 . Then, we can use CASE A. \& we get a constant, which we know how to integrate.

Q: What about (2) $=\int \tan ^{m} x \sec ^{n} x d x \quad \&$ (3) $=\int \cot ^{m} x \csc ^{n} x d x$? Fr these 2 , we need to treat 3 different cases:
$\left.\begin{array}{l}\text {-CASE } A=m \text { rd } \\ \text { - CASE } B=n \text { even }\end{array}\right\}$ sulap $($ moss $\& n$ ere $) m$ conure any of them

- CASE C : nether, so maven \& n odd. m con't solve (for now!) We sob se the integrals by using specific Tigmonetric identities \& Substitutions after expanding $\tan ^{m} x \sec ^{n} x \quad r \cot ^{m} x \csc ^{n} x$ with the Binomial Thu.
(2) $\left\{\begin{array}{l}\text { CASE } A \text { : use } \tan ^{2} x=\sec ^{2} x-1 \quad \& \quad d(\sec x)=\sec x \tan x d x \\ \text { CASE B: use } \sec ^{2} x=1+\tan ^{2} x \text { \& } d(\tan x)=\sec ^{2} x d x\end{array}\right.$ $\left(\frac{1}{\cos ^{2} x}=\frac{\cos ^{2} x}{\cos ^{2} x}+\frac{\sin ^{2} x}{\cos ^{2} x}\right)$
(3) $\left\{\begin{array}{rl}\text { CASE } A \text { : use } \cot ^{2} x=\csc ^{2} x-1 \\ \text { CASE B : use } \csc ^{2} x=1+\cot ^{2} x \\ \left(\frac{1}{\sin ^{2} x}=\frac{\sin ^{2} x}{\sin ^{2} x}+\frac{\cos ^{2} x}{\sin ^{2} x}\right.\end{array} \quad \begin{array}{ll}d(\cot x)=-\csc ^{2} x d x\end{array} \quad d(\csc x)=-\cot x \csc x d x\right.$

EXAMPLES fr e (2)
$(\underline{m=3}, n=1) m$ case A

$$
\begin{aligned}
& \int \tan ^{3} x \sec x d x=\int_{\text {pul }}^{\substack{\tan x}} \tan (x) \tan ^{2}(x) \sec x d x=\int \operatorname{can}^{\text {our } x}\left(\sec ^{2} x-1\right) \sec x d x \\
& =\int \sec ^{2} x \tan x \sec x d x-\int \tan x \sec x d x=\frac{\tan ^{2} x}{3}-\frac{\sec ^{3} x}{2}+C \\
& \operatorname{sen}(\tan x \sec x d x)=d(\sec x) \quad=d(\sec x)
\end{aligned}
$$

Step E: 1. $\tan ^{2 k+1}(x) \sec (x)=\tan x \sec x\left(\sec ^{2} x-1\right)^{k}$
2. Expand $\left(\sec ^{2} x-1\right)^{k}$ with Binomial Thurem
3. Use substitutive $u=\sec x \quad d u=\tan x \sec x d x$
$(m=4, n=6)$ mas case B

$$
\begin{aligned}
& \int \tan ^{4} x \sec ^{6} x d x=\int \tan ^{4} x \sec ^{4} x \sec ^{2} x d x=\int \tan ^{4} x\left(1+\tan ^{2} x\right)^{2} \sec ^{2} x d x \\
& \operatorname{pull}^{2} \sec ^{2} x \operatorname{out} \\
& \text { expand } \overline{\bar{j}} \quad \int \tan ^{4} x\left(1+\tan ^{4} x+2 \tan ^{2} x\right) \sec ^{4} x d x \\
& \operatorname{son}^{4} x \operatorname{sen}^{\overline{2}} \sec ^{2} x d x \int \tan ^{4} x \frac{\sec ^{2} x d x}{=d \tan (x)}+\int \tan ^{8} x \frac{\sec ^{2} x d x}{=d \tan x)}+2 \int \tan ^{6} x \frac{\sec ^{2} x d x}{=d(\tan x)} \\
& =\frac{\tan ^{5} x}{5}+\frac{\tan ^{9} x}{9}+\frac{2}{7} \tan ^{7} x+C
\end{aligned}
$$

Steps: 1. $\operatorname{Tan}^{m}(x) \operatorname{ec}^{2 k} x d x=\tan ^{m} x\left(\sec ^{2} x\right)^{k-1} x \sec ^{2} x d x$
2. Write $\left(\sec ^{2} x\right)^{k-1}=\left(1+\tan ^{2} x\right)^{k-1} \&$ expand with Binomial Theorem
3. Use substitution $u=\operatorname{Tan} x \quad d u=\sec ^{2} x d x$.
Δ Case C we cannot yet solve, with one exception $m=0$ \& $n=1$.

$$
\begin{aligned}
& -\int \sec u d u=\ln (\sec (u)+\tan (u))+B \\
& -\int \csc u d u=-\ln (\csc (u)+\cot (u))+B
\end{aligned}
$$

(B constant.)

Remark. Sometimes it's easier To express $\operatorname{Tan}^{m} x \sec ^{n} x$ re ot ${ }^{m}(x) \csc ^{n} x$ using $\sin x \& \cos x$. Issue: exprenents can be negature!
Example: $\int \tan x \sec x d x=\int \frac{\operatorname{sen} x}{\cos x} \frac{1}{\cos x} d x=\int \frac{\sin x}{\cos ^{2} x} d x$

$$
\underset{\substack{\downarrow \\ u=\cos x}}{ } \int-\frac{d u}{u^{2}}=\frac{1}{u}+C=\frac{1}{\cos x}+C=\sec x+C
$$

We already knew this because $d \sec x=\tan x \sec x d x$
\$2 Trigonmetic Substitutions
This method is used T_{0} compute integrals insolsing either of these 3 expressins: (1) $\sqrt{a^{2}-x^{2}}$ where $a>0$ is a constant.
(2) $\sqrt{a^{2}+x^{2}}$
(3) $\sqrt{x^{2}-a^{2}}$

Each experssin requires a differut substitution of x as a tug functim
(1) $x=a \operatorname{sen} u \leadsto \sqrt{a^{2}-x^{2}}=\sqrt{a^{2}-a^{2} \operatorname{sen}^{2} u}=\sqrt{a^{2} \cos ^{2} u}=a \cos u$ $\frac{1}{1}=\cos ^{2} u+\sin ^{2} u$
(2) $x=a \tan u \operatorname{mD} \sqrt{a^{2}+x^{2}}=\sqrt{a^{2}+a^{2} \tan ^{2} u}=\sqrt{a^{2} \sec ^{2} u}=a \sec u$ use $1+\frac{\operatorname{sen}^{2} u}{\cos ^{2} u}=\frac{1}{\operatorname{cs}^{2} u}=\sec ^{2} u$
(3) $x=a \sec u \leadsto \sqrt{x^{2}-a^{2}}=\sqrt{a^{2} \sec ^{2} u-a^{2}} \stackrel{1}{=} \sqrt{a^{2} \tan ^{2} u}=a \tan u$

Gemetric Intupnetation: x, a are sides of a right thiaugle.
(1) $\sqrt{a^{2}-x^{2}}$
(2) $\sqrt{a^{2}+x^{2}}$
(3) $\sqrt{x^{2}-a^{2}}$

$x=a \sin u$
$\cos u=\frac{\sqrt{a^{2}-x^{2}}}{a}$
$\tan u=\frac{x}{\sqrt{a^{2}-x^{2}}}$

$x=a \tan u$

$$
\begin{aligned}
& \cos u=\frac{a}{\sqrt{a^{2}+x^{2}}} \\
& \sin u=\frac{x}{\sqrt{a^{2}+x^{2}}}
\end{aligned}
$$

$a=x \cos u$
m $x=\frac{a}{\cos u}=a \sec u$
$\sin u=\frac{\sqrt{x^{2}-a^{2}}}{x}$
$\tan u=\frac{\sqrt{x^{2}-a^{2}}}{a}$

Examples
(1)

$$
\begin{aligned}
& \int \frac{\sqrt{a^{2}-x^{2}}}{x} d x=\int \frac{a \cos u}{a \operatorname{sen} u} a \cos u d u=a \int \frac{\cos ^{2} u}{\sin u} d u \\
& =a \int \frac{1-\sin ^{2} u}{\sin u} d u=a \sin u \quad d x=a \cos u d u \\
& =-a \sin u-a \int \operatorname{sen} u d u . \\
& =-\ln (u)+\cot (u))+a \cos u+C
\end{aligned}
$$

Interns of x ? $\cdot \csc (u)=\frac{1}{\sin u}=\frac{a}{x}$,

$$
\begin{aligned}
& \text { - } \cos u=\sqrt{1-\sin ^{2} u}=\sqrt{1-x^{2} / a^{2}}=\frac{\sqrt{a^{2}-x^{2}}}{a}, \\
& -\cot (u)=\frac{\cos u}{\sin u}=\frac{\left(\sqrt{a^{2}-x^{2}}\right) / a}{x / a}=\frac{\sqrt{a^{2}-x^{2}}}{x}
\end{aligned}
$$

Conclude $\int \frac{\sqrt{a^{2}-x^{2}}}{x} d x=-a \ln \left(\frac{a}{x}+\frac{\sqrt{a^{2}-x^{2}}}{x}\right)+\sqrt{a^{2}-x^{2}}+C$
(2)

$$
\begin{aligned}
& \int \frac{d x}{x^{2} \sqrt{a^{2}+x^{2}}}=\int_{\substack{\downarrow \\
x=a \tan u}} \frac{a \sec ^{2} u d u}{a^{2} \tan u a \sec u}=\frac{1}{a^{2}} \int \frac{\sec u}{\tan ^{2} u} d u=\frac{1}{a^{2}} \int \frac{\cos ^{2} u}{\operatorname{sen}^{2} u} \frac{d u}{\cos u} \\
& =\frac{1}{a^{2}} \int \frac{\cos u d u}{\operatorname{sen}^{2} u} \underset{\substack{\downarrow \\
y=\sec u}}{=} \frac{1}{a^{2} u d u} \int \frac{d y}{y^{2}}=\frac{-1}{a^{2} y}+C=\frac{-1}{a^{2} \operatorname{sen} u}+C
\end{aligned}
$$

Again, we need to write sense in terms of x !
$a \sec u=\sqrt{a^{2}+x^{2}}$ gites $\cos u=\frac{a}{\sqrt{a^{2}+x^{2}}}$
So $\sin u=\cos u \tan u=\frac{a}{\sqrt{a^{2}+x^{2}}} \frac{x}{a}=\frac{x}{\sqrt{a^{2}+x^{2}}}$
Conduce : $\int \frac{d x}{x^{2} \sqrt{a^{2}+x^{2}}}=\frac{-\sqrt{a^{2}+x^{2}}}{a^{2} x}+C$
We can verify this! $\frac{d}{d x}\left(\frac{-\sqrt{a^{2}+x^{2}}}{a^{2} x}\right)=\left(\frac{-x a^{2} x}{\sqrt{a^{2}+x^{2}}}+a^{2} \sqrt{a^{2}+x^{2}}\right)$

$$
=\frac{-a^{2} x^{2}+x^{2}\left(a^{2}+x^{2}\right)}{a^{4} x^{2} \sqrt{a^{2}+x^{2}}}=\frac{1}{x^{2} \sqrt{a^{2}+x^{2}}}
$$

(3) $\int \frac{\sqrt{x^{2}-a^{2}}}{x} d x \sum_{\substack{b \\ x=a \sec u}} \frac{a \tan u}{a \sec u} a \sec u \tan u d u=\int a \tan ^{2} u d u$ $d x=a \sec u \tan u d u$

$$
\underset{\hat{\uparrow}}{=} a \int\left(\sec ^{2} u-1\right) d u=a \int \underbrace{\sec ^{2} u d u}_{=d(\tan u)}-a \int d u=a \tan u-a u+C
$$

$$
n=2 \text { Even }
$$

Again, we need to write u stank in terms of x ! $\operatorname{atan} u=\sqrt{x^{2}-a^{2}}$ $u=\arctan \left(\frac{\sqrt{x^{2}-a^{2}}}{a}\right)$
Conclude: $\int \frac{\sqrt{x^{2}-a^{2}}}{x} d x=\sqrt{x^{2}-a^{2}}-a \arctan \left(\frac{\sqrt{x^{2}-a^{2}}}{a}\right)+C$

