૮૧૧ 🛛

51. Introduction:
Limit Law: IF & e.g. are two functions defined around x=a with
limit
$$f_{(X)} = M$$
, limit $g_{(X)} = N$ and $N \neq 0$, then:
 $x \Rightarrow a$
 $f_{(X)} = \frac{11}{N}$
 \bigwedge We con't use this statement if $N=0$.
(1) IF $\Pi \neq 0$ a $N=0$, then $\lim_{X\to 0} \frac{h_{(X)}}{g_{(X)}}$ can be $\pm \infty$ or may not exist
 $\underbrace{EXAMPLES}_{X\to 0} \cdot \frac{1}{X}$ does not exist
 $\lim_{X\to 0} \frac{1}{X^2} = -\infty$
 $\lim_{X\to 0} \frac{1}{X^2} = -\infty$, $\lim_{X\to 0} \frac{1}{X^2} = \infty$, $\lim_{X\to 0} \frac{1}{X^4} = \infty$, $\lim_{X\to 0} \frac{1}{X^4} = \infty$
 $\lim_{X\to 0} \frac{1}{X^4} = -\infty$, $\lim_{X\to 0} \frac{1}{X^4} = -\infty$, $\lim_{X\to 0} \frac{1}{X^4} = -\infty$, $\lim_{X\to 0} \frac{1}{X^4} = -\infty$
 $\lim_{X\to 0} \frac{1}{X^4} = -\infty$, $\lim_{X\to 0} \frac{1}{X^4} = -\infty$, $\lim_{X\to 0} \frac{1}{X^4} = -\infty$

• Ratinal functions:
$$\frac{P(x)}{Q(x)}$$
 with $P(0) = Q(0) = 0$.
Factor $P \notin Q$: $P(x) = x^n \tilde{P}(x)$ with $\tilde{P}(0) \neq 0$ $n \ge 0$
 $Q(x) = x^m \tilde{Q}(x) - Q(0) \neq 0$ $m \ge 0$
Then $\lim_{x \to 0} \frac{P(x)}{Q(x)} = \lim_{x \to 0} x^{n-m} \frac{\tilde{P}(x)}{\tilde{Q}(x)} = \begin{cases} 0 & n > m \\ \frac{\tilde{P}(x)}{Q(x)} & n = m \\ \frac{\tilde{P}(x)}{Q(x)} & n = m \\ \frac{\tilde{P}(x)}{Q(x)} & \frac{\tilde{P}(x)}{Q(x)} \end{cases}$

Example
$$\tilde{P} = \tilde{Q} = 1$$

• $\frac{m+2}{m+1}$ $\frac{l(m)}{m=0}$ $\frac{l(m)}{Q_{(N)}} = \frac{l(m)}{X^2} = \frac{l(m)}{X^2} \frac{1}{X^{20}}$ $\frac{l(m)}{X} = \frac{l(m)}{X^2} \frac{1}{X^{20}} \frac{1}{X^{20}} + \frac{l(m)}{X^{20}} \frac{l(m)}{X^{20}} - \frac{l(m)}{X^{20}} \frac{l(m)}{X^{20}} + \frac{l(m)}{X^{20}} \frac{l(m)}{X^{20}} + \frac{l(m)}{X^{20}} - \frac{l(m)}{X^{20}} \frac{l(m)}{X^{20}} + \frac{l(m)}{X^{20}} + \frac{l(m)}{X^{20}} + \frac{l(m)}{X^{20}} + \frac{l(m)}{X^{20}} + \frac{l(m)}{X^{20}} - \frac{l(m)}{X^{20}} + \frac{l(m)}{X^{20}} - \frac{l(m)}{X^{20}} + \frac{l(m)}{X^{20}} - \frac{l(m)}{X^{20}} + \frac{l(m)}{X^{20}} - \frac{l(m)}{X$

This argument soly works if
$$g'(x) \neq 0$$
 is the approximations (x) are good.
In grand, we will need the theon Value Theorem (HVT) To prove the Theorem.
(and time!)
EXAMPLES (1) First = sen x is $\frac{1}{0}$ indifferminacy $\frac{1}{7} \times -\infty$.
L'hôpital gives: $f(x) = xm \times -f'(x) = \cos x$
 $g(x) = x - g'(x) = i$ (near gas around $x=0$).
So $\lim_{x\to\infty} \frac{xm x}{x} = \lim_{x\to\infty} \frac{\cos x}{1} = \cos 0 = 11$.
(2) $\frac{f(x)}{3(x)} = \frac{x^2}{x} \xrightarrow{x\to0} x_{1} = 0$ (national function trick!)
Uning L'Hôpital: $F'(x) = 2x + g'(x) = i$ (near gas around $x=0$).
So $\lim_{x\to\infty} \frac{x^2}{x} = \lim_{x\to0} \frac{2x}{1} = 2\cdot0 = 10$
(3) $\frac{f(x)}{3(x)} = \frac{tan (3x)}{x} = sec^2(3x) \cdot 3 = \frac{3}{1}$
Using L'Hôpital: $f'(x) = sec^2(3x) \cdot 3 = \frac{3}{1}$
Using L'Hôpital: $f'(x) = sec^2(3x) \cdot 3 = \frac{3}{1}$
So $\lim_{x\to\infty} \frac{tan (3x)}{e^{x}-1} = \lim_{x\to0} \frac{3/(a_1(3x))}{e^x} = \frac{3/1}{1} = 13$
Obscunting is we can iterate the gavens if $\frac{f'(x)}{5(x)} = \frac{f'(x)}{8^{1}(x)} = \frac{f'(x)}{8^{1}(x)}$ if $\lim_{x\to\infty} \frac{f'(x)}{g(x)} = \lim_{x\to\infty} \frac{g'(x)}{g(x)} = \frac{1}{2} + \lim_{x\to\infty} \frac{g'(x)}{g(x)} = \frac{1}{2} + \frac{1}{2} +$

(1)
$$\sum_{x\to 0}^{n} \frac{\sin x - x}{x^3} = \lim_{t\to 0}^{n} \frac{\sin x - 1}{3x^2} = \lim_{x\to 0}^{n} \frac{-\sin x}{6x} = \lim_{t\to \infty}^{n} \frac{\cos x}{6x} = -\frac{1}{6}$$

(1) $\sum_{x\to 0}^{n} \frac{\sin x - x}{x^3} = \lim_{x\to 0}^{n} \frac{\sin x - 1}{3x^2} = \lim_{x\to 0}^{n} \frac{\cos x}{2x - 5} = -\frac{1}{6}$
(1) $\sum_{x\to 0}^{n} \frac{\sin x}{2x + 5} = \frac{\sin x}{3} = 0$ but $\lim_{x\to 0}^{n} \frac{(\sin x)!}{(2x + 5)!} = \lim_{x\to 0}^{n} \frac{\sin x - 5}{2} = \frac{1}{2} - 2$
(1) $\sum_{x\to 0}^{n} \frac{\sin x}{2x + 5} = \frac{\sin x}{3} = 0$ but $\lim_{x\to 0}^{n} \frac{(\tan x)!}{(2x + 5)!} = \lim_{x\to 0}^{n} \frac{\sin x}{2} = \frac{1}{2} - 2$
(1) $\sum_{x\to 0}^{n} \frac{\sin x}{2x + 5} = \frac{\sin x}{3} = 0$ but $\lim_{x\to 0}^{n} \frac{(\tan x)!}{(2x + 5)!} = \lim_{x\to 0}^{n} \frac{\sin x}{2} = \frac{1}{2} - 2$
(1) $\sum_{x\to +\infty}^{n} \frac{\sin x}{2x + 5} = \frac{\sin x}{5} + \frac{1}{5} + \lim_{x\to -\infty}^{n} \frac{1}{5} + \frac{1}{5}$