$$\frac{|\text{colume XLIV: $$IS.1 What is an infinite series?} entity least time in same and imposful interacts interacts interacts interacts interacts interacts interacts.
Scheric Definition & examples
Definition: An infinite series (densitude), it series is shot, is an expression of the firm:
 $q_1 + q_2 + q_3 + \dots + q_n + \dots = \sum_{n=1}^{\infty} q_n$ (d)
 q_n is called the sⁿ term of the series, and it's anally given by a simple formula
Example $q_n = \frac{1}{2^n} arco, so there is $1 + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \dots = \sum_{n=0}^{\infty} \frac{1}{2^n}$ (likelinder is a second in the series)
GOAL: Interpret series such as (d) both formulally a exactly, maxing, try to compute its value are determine if its value is a strict is not expressions.
EXAMPLE I: Interpret series and expressions with its where is a strict is expressions.
EXAMPLE I: Interpret series in (0,1) have decimal expressions with interactly maxing terms is $\frac{1}{q} = \sum_{n=1}^{\infty} \frac{1}{10^n} = \sum_{n=1}^{\infty} \frac{1}{10^n}$.
So $\frac{1}{q} = \sum_{n=1}^{\infty} \frac{1}{10^n} = \sum_{n=1}^{\infty} (\frac{1}{10})^n$ where $\frac{1}{10^n} + \frac{1}{10^n} + \frac{1}{10^$$$$

So
$$\frac{1-x^{n}}{1-x} = 1+x+\dots+x^{n-1}$$
 mo $\frac{1}{1-x} = 1+\dots+x^{n-1}+\frac{x^{n}}{1-x}$
If $x^{n} \xrightarrow{n \to \infty} f_{17}$ each fix x (which happens if $|x| < 1$)
thun: $\frac{1}{1-x} = 1+x+\dots+x^{n-1}+\dots = \sum_{n=0}^{\infty} x^{n}$ Power series inpansion
 $g|_{\frac{1}{2}} f_{17} |x| < 1$.
Check: IF $x = \frac{1}{10}$, we get $\frac{1}{1-\frac{1}{10}} = \frac{1}{9\sqrt{0}} = \frac{10}{7} \stackrel{?}{=} 1+\left(\frac{1}{10}+\dots+\frac{1}{10}+\dots\right)$
This agrees with $\frac{1}{9} = \frac{1}{10} + \frac{1}{10^{2}} + \dots = \sum_{n=1}^{\infty} \left(\frac{1}{10}^{n}\right)^{n}$ (decimal expansion of 2)
• Transants: inplace x by (-x), $\sqrt{27} x^{2}$.

$$\frac{1}{1+\chi} = \frac{1}{1-(-\chi)} = \sum_{N=0}^{\infty} (-\chi)^{N} = \sum_{N=0}^{\infty} (-1)^{N} \chi^{N} = 1-\chi+\chi^{2}-\chi^{3}+\chi^{4}-\dots$$

$$\frac{1}{1-\chi^{2}} = \sum_{N=0}^{\infty} (\chi^{2})^{N} = \sum_{N=0}^{\infty} \chi^{2n} = (+\chi^{2}+\chi^{4}+\chi^{6}+\dots)$$

$$\frac{1}{1+\chi^{2}} = \frac{1}{1-(-\chi^{2})} = \sum_{N=0}^{\infty} (-\chi^{2})^{N} = \sum_{N=0}^{\infty} (-\chi^{2})^{N} = \sum_{N=0}^{\infty} (-\chi^{2}+\chi^{4}-\chi^{6}+\dots)$$

Q1: Can we manipulate these power series as if they were infinite polynomials? In particular, can we integrate / differential term -Ly-Term ? If so, we could get a lot of from identities!

EXAMPLES:

(1)
$$\ln(1+x) = \int \frac{dx}{1+x} = \int \sum_{\substack{k=0 \ k < 1}}^{\infty} (-1)^{n} x^{n} dx$$
 (2) $\sum_{\substack{n=0 \ k < 1}}^{\infty} \int (-1)^{n} x^{n} dx$

$$= \sum_{\substack{n=0 \ k+1}}^{\infty} \frac{(-1)^{n} x^{n+1}}{n+1} = \sum_{\substack{n=1 \ k < 1}}^{\infty} (-1)^{\frac{m-1}{2}} \frac{x^{n}}{m} = x - \frac{x^{2}}{2} + \frac{x^{3}}{3} - \frac{x^{4}}{4} + \dots$$
ulabel $m = n+1$
so $m \ge 1$
so $m \ge 1$
so $m \ge 1$
so $m \ge 1$
Hull 1+x), publiced $|x| < 1 \in 1$
that we can inded swap $\sum_{\substack{n=0 \ k < 1}}^{\infty} < \int .$

(2) arction
$$x = \int \frac{dx}{1+x^2} = \int \sum_{n=0}^{\infty} (-1)^n x^{2n} dx$$
 (3) $\sum_{n=0}^{\infty} \int (-1)^n x^{2n} dx$

$$= \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{2n+1} = x - \frac{x^3}{3} + \frac{x^5}{5} - \frac{x^7}{7} + \dots$$
multiply a provided interval of provided interval
sump $\sum_{n=0}^{\infty} 4 \int .$
(2) Unce there identifies an established, can us enclose at 5 some x ? After all
there traises an established, can us enclosed at 5 some x ? After all
there traises an established contraction of x in reached interval
steps, so we must proveed on the continn)
 $\ln(2) = \ln(1+1)^{\frac{2}{2}} - \frac{1}{2} + \frac{1}{3} - \frac{1}{7} + \dots$
We will be that this is time (followe lecture!)
. Set $x=1$ in (2) to prove extended () (again, intermediate steps used interv
 $\frac{1}{4} = \arctan(1)^{\frac{2}{2}} - \frac{1}{2} + \frac{1}{5} - \frac{1}{7} + \dots$
We will use that this is a mild identify (and can be used to compute to
 $\frac{1}{4} = \operatorname{anctan}(1)^{\frac{2}{2}} - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \dots$
We will use that this is a mild identify (and can be used to compute to
 $\frac{1}{4} = \operatorname{anctan}(1)^{\frac{2}{2}} = 1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \dots$
We will use that this is a mild identify (and can be used to compute to
 $\frac{1}{4} = \operatorname{anctan}(1)^{\frac{2}{2}} = 1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \dots$
We will use that this is a mild identify (and can be used to compute to
 $\frac{1}{4} = \operatorname{anctan}(1)^{\frac{2}{2}} = 1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \dots$
We will use that this is a mild identify (and can be used to compute to
 $\frac{1}{4} = \operatorname{anctan}(1)^{\frac{2}{2}} = 1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \dots$
We will use that this is a mild identify (and can be used to compute to
 $\frac{1}{5} + \frac{1}{5} + \frac{1}{5} - \frac{1}{7} + \dots$
(i) differentiation term $-\frac{1}{5} - \frac{1}{5} + \frac{1}{5} - \frac{1}{7} + \dots$
(i) differentiation term $-\frac{1}{5} - \frac{1}{5} + \frac{1}{5} - \frac{1}{7} + \dots$

Typically, first feur terms will be unconstraint.

$$\frac{E \times AHPLE [1, \frac{1}{2}] = \frac{1}{2} = \frac{1}{2} + \frac{1}{2}$$