Lecture XLIV: §13.1 What is an infinite series?
Last Tine : we saw examples of infinite miss from Riemann Sums of improper integrals.
S1. Basic Definition \& examples
Definition: An impimite series (Alconstants), ar series for short, is an expression of the from: $\quad a_{1}+a_{2}+a_{3}+\cdots+a_{n}+\cdots=\sum_{n=1}^{\infty} a_{n}$

- a_{n} is called the $n^{\text {th }}$ Tum of the series, and it's usually given by a simple fromula
Example $a_{n}=\frac{1}{2^{n}} n \geqslant 0$, , shies is $1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\cdots=\sum_{n=0}^{\infty} \frac{1}{2^{n}} \quad$ (fisstindex \quad is 0 here)
GOAL: Interpect sues such as ($*$) both fromally \& exactly, meaning, thy T_{0} compute its value π determine if its value is $\infty \pi$ it it does not exist.

EXATPLE I: In Finite decimal expansions

- Finite expansions:

$$
0 . a_{1} a_{2} a_{3} a_{4} \cdots a_{n}=\frac{a_{1}}{10}+\frac{a_{2}}{10^{2}}+\frac{a_{3}}{10^{3}}+\cdots+\frac{a_{n}}{10^{n}}
$$

Here: $a_{n}=0,1,2, \ldots$, or 9 fo each $n \geqslant 1$.

- Sorer real numbers in $(0,1)$ have decimal expansions with m finitely many tums

Examples (1) $\frac{1}{3}=0.333 \cdots$ mans $\frac{1}{3}=\frac{3}{10}+\frac{3}{10^{2}}+\frac{3}{10^{3}}+\cdots=\sum_{n=1}^{\infty} \frac{3}{10^{n}}$.
So $\frac{1}{9}=\sum_{n=1}^{\infty} \frac{1}{10^{n}}=\sum_{n=1}^{\infty}\left(\frac{1}{10}\right)^{n} \quad$ $=3 \sum_{n=1}^{\infty} \frac{1}{10^{n}}$ we can manipulate shies
(2) $\pi=3.1415 \ldots \ldots \pi=3+\frac{1}{10}+\frac{4}{10^{2}}+\frac{1}{10^{3}}+\frac{1}{5^{4}}+\cdots=3+\sum_{n=1}^{\infty} \frac{a_{n}}{10^{n}}$.

EXAIPLE 2: Geometric Series
Q: Can we write $\frac{1}{1-x}$ as a series in x^{n} ?
A YES, ria long dinisim
Alternative: Check $(1-x)\left(1+x+\cdots+x^{n-1}\right)=\underset{1+x+\cdots x^{n-1}}{=} \underset{1}{1+x \cdots-x^{n}}$

So $\frac{1-x^{n}}{1-x}=1+x+\cdots+x^{n-1}$ ms $\frac{1}{1-x}=1+\cdots+x^{n-1}+\frac{x^{n}}{1-x}$
If $x^{n} \xrightarrow[n \rightarrow \infty]{\longrightarrow 0}$ is each fix x (which haffens if $|x|<1$)
then: $\frac{1}{1-x}=1+x+\cdots+x^{n-1}+\cdots=\sum_{n=0}^{\infty} x^{n}$ Poon series expansion of $\frac{1}{1-x}$ for $|x|<1$.
Check: If $x=\frac{1}{10}$, we get $\frac{1}{1-\frac{1}{10}}=\frac{1}{9 / 10}=\frac{10}{9} \stackrel{?}{=} 1+\left(\frac{1}{10}+\cdots+\frac{1}{10}+\cdots \cdot \cdot\right)$
This agrees with $\frac{1}{9}=\frac{1}{10}+\frac{1}{10^{2}}+\cdots=\sum_{n=1}^{\infty}\left(\frac{1}{10}\right)^{n} \quad$ (decimal expansion of $\frac{1}{9}$)

- Variants: replace x by $(-x)$, or x^{2}

$$
\begin{aligned}
& \cdot \frac{1}{1+x}=\frac{1}{1-(-x)}=\sum_{n=0}^{\infty}(-x)^{n}=\sum_{n=0}^{\infty}(-1)^{n} x^{n}=1-x+x^{2}-x^{3}+x^{4}-\cdots \\
& -\frac{1}{1-x^{2}}=\sum_{\substack{1-x|=|x|<1}}^{\mid\left(x ^ { 2 } \left|=|x|^{2}<1\right.\right.}\left(x^{2}\right)^{n}=\sum_{n=0}^{\infty} x^{2 n}=1+x^{2}+x^{4}+x^{6}+\cdots \\
& \text { - } \frac{1}{1+x^{2}}=\frac{1}{1-\left(-x^{2}\right)}=\sum_{n=0}^{\infty}\left(-x^{2}\right)^{n}=\sum_{n=0}^{\infty}(-1)^{n} x^{2 n}=1-x^{2}+x^{4}-x^{6}+\cdots
\end{aligned}
$$

Q1: Can we manipulate these power series as if they whe infinite prlyunnials?
Inpaticalas, can we integrate / differential term-by-Tem?
If so, we could get a lot of han identities!
EXAMPLES:

$$
\begin{aligned}
& \text { (1) } \ln (1+x)=\int \frac{d x}{1+x} \sum_{\substack{1 \\
|x|<1}} \sum_{n=0}^{\infty}(-1)^{n} x^{n} d x \bigodot_{\text {SWAP }} \sum_{n=0}^{\infty} \int(-1)^{n} x^{n} d x
\end{aligned}
$$

\leadsto We get a pron sues explessim $f>\ln (1+x)$, provided $|x|<1$ \& that we can inced swap $\sum_{n=0}^{\infty} \& \int$.
(2)

$$
\begin{aligned}
\arctan x & =\int \frac{d x}{1+x^{2}} \sum_{|x|<1}^{\mid}=\int \sum_{n=0}^{\infty}(-1)^{n} x^{2 n} d x \bigoplus_{\text {SwAP }} \sum_{n=0}^{\infty} \int(-1)^{n} x^{2 n} d x \\
= & \sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n+1}}{2 n+1}=x-\frac{x^{3}}{3}+\frac{x^{5}}{5}-\frac{x^{7}}{7}+\cdots
\end{aligned}
$$

n) We get a prow series expression fr anctan x provided $|x| c \mid$ \& that we can swap $\sum_{n=0}^{\infty} \& \int$.

Q2 Once these identities are established, con we evaluate at some x ? After all, these series are functions of x !

- Set $x=1$ in (1) to guess $\ln 2$ (\triangle we needed $|x|<$) fo the intermediate steps, so we must paced with caution)

$$
\ln (2)=\ln (1+1) \stackrel{?}{=} 1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\cdots
$$

We will see that this is thee (fatine lecture!)

- Set $x=1$ in (2) to guess acton (1) (again, intermediate steps used $1 x k 1$, so we must be careful)

$$
\frac{\pi}{4}=\arctan (1) \stackrel{?}{=} 1-\frac{1}{3}+\frac{1}{5}-\frac{1}{7}+\cdots
$$

We will see that this is a valid identity land can be used to compute π $u_{p} T_{0}$ any disind place?
§2 Application: Differential equations
IDEA Given a differential equation $\left(y^{\prime}=y, y^{\prime \prime}+a^{2} y=0\right.$. eke.) we con guess a solution by (1) propronng $y(x)=\sum_{n=0}^{\infty} a_{n} x^{n} \quad$ (Taylor series expansion)
(2) differentiation term -by-term
(3) Writing relations awing coefficient to determine them.

Tysiadly, first few terms will be unconstraint.

EXAMPLE $1, \quad y^{\prime}=y$
Write $y=a_{0}+a_{1} x+a_{2} x^{2}+\cdots+a_{n} x^{n}+\cdots$

$$
y^{\prime}=a_{1}+2 a_{2} x+3 a_{3} x+\cdots+(n+1) a_{n+1} x^{n}+\cdots
$$

Equate term-by-Term: \quad Recension: $a_{n+1}=\frac{a_{n}}{n+1}$

$$
\begin{aligned}
& a_{0}=a_{1} \\
& a_{1}=2 a_{2} \\
& a_{2}=3 a_{3} \\
& a_{3}=4 a_{4} \quad \leadsto a_{1}=a_{0} \\
& a_{2}=\frac{1}{2} a_{1}=\frac{a_{0}}{2} \\
& m a_{3}=\frac{a_{2}}{3}=\frac{a_{0}}{3 \cdot 2}
\end{aligned} \quad \leadsto a_{4}=\frac{a_{3}}{4}=\frac{90}{4!} \quad \leadsto \text { Propose }
$$

But we know $y=\lambda e^{x}$ is the general solution to $y^{\prime}=y$. $\quad(\lambda=y(0))$ Conclusion : $e^{x}=1+x+\frac{x^{2}}{2}+\frac{x^{3}}{3!}+\cdots+=\sum_{n=0}^{\infty} \frac{x^{n}}{n!} \quad(\operatorname{set} 0!=1)$

EXAMPLE 2: $\quad y^{\prime \prime}+y=0$
As befre we know the geneal solution is $y=\alpha \operatorname{sen}(x)+\beta \cos x$ $y(0)=\beta \quad \& \quad y^{\prime}=\alpha \cos x-\beta \sin x$, so $y^{\prime}(0)=\alpha$. . parameters
Proposed solution: $y=\sum_{n=0}^{\infty} a_{n} x^{n}$

$$
\begin{array}{ll}
y=a_{0}+a_{1} x+a_{2} x^{2}+\cdots+a_{n} x^{n}+\cdots & a_{0}=y(0) \\
y^{\prime}=a_{1}+2 a_{2} x+3 a_{3} x^{2}+\cdots+(n+1) a_{n+1} x^{n}+\cdots & a_{1}=y(1) \\
y^{\prime \prime}=2 a_{2}+3 \cdot 2 a_{3} x+4 \cdot 3 a_{4} x^{2}+\cdots+(n+2)(n+1) a_{n+2} x^{n}+\cdots &
\end{array}
$$

We eft: constant term: $a_{0}+2 a_{2}=0$

$$
\begin{array}{ll}
x \text {-ब्दm } & : \quad a_{1}+3.2 a_{3}=0 \\
x^{2} \text {-ब्यm } & : \quad a_{2}+4.3 a_{4}=0 \\
x^{n} \text { ब.mm }: & a_{n}+(n+2)(n+1) a_{n+2}=0 \quad \leadsto a_{n+2}=\frac{-a_{n}}{(n+2)(n+1)}
\end{array}
$$

We get 2 ncursims; one fo even indies $(0,2,4, \ldots)$ \& one fo sold indices ($1,3,5, \ldots$)

$$
\text { - } a_{0} \rightarrow a_{2}=-\frac{a_{0}}{2} \longrightarrow a_{4}=\frac{-a_{2}}{4 \cdot 3}=\frac{(-1)^{2} a_{0}}{4!} \longrightarrow a_{6}=\frac{-a_{4}}{6 \cdot 5}=\frac{(-1)^{3} a_{0}}{6!} \rightarrow \ldots
$$

We set $a_{2 k}=(-1)^{k} a_{0} \quad$ fo $k \geqslant 0$

$$
\text { . } a_{1} \rightarrow a_{3}=\frac{-a_{1}}{3!} \rightarrow a_{5}=\frac{-a_{3}}{5 \cdot 4}=\frac{(-1)^{2} a_{1}}{5!} \rightarrow a_{7}=\frac{-a_{5}}{7 \cdot 6}=\frac{(-1)^{3} a_{1}}{7!} \rightarrow \ldots
$$

We get $a_{2 k+1}=(-1)^{k} \frac{a_{1}}{(2 k+1)!} \quad$ ir $k \geqslant 0$
Condusion: $\quad y(x)=\sum_{n=0}^{\infty} a_{n} x^{n} \bigodot_{\text {REGROUP }} \sum_{n \text { wren }} a_{n} x^{n}+\sum_{n \text { oed }} a_{n} x^{n}$
(this step marines justification!)

$$
\begin{aligned}
& =\sum_{k=0}^{\infty} a_{2 k} x^{2 k}+\sum_{k=0}^{\infty} a_{2 k+1} x^{2 k+1} \\
& =\sum_{k=0}^{\infty} \frac{(-1)^{k} a_{0}}{(2 k)!} x^{2 k}+\sum_{k=0}^{\infty} \frac{(-1)^{k} a_{1}}{(2 k+1)!} x^{2 k+1} \\
& =a_{0}\left(\sum_{k=0}^{\infty}(-1)^{k} \frac{x^{2 k}}{(2 k)!}\right)+a_{1}\left(\sum_{k=0}^{\infty}(-1)^{k} \frac{x^{2 k+1}}{(2 k+1)!}\right)
\end{aligned}
$$

Since $a_{0}=\partial(0) \quad 2 a_{1}=y^{\prime}(0)$, comparing this sun with the general solution $y(x)=a_{0} \cos x+a_{1} \sin x$ yields:

$$
\sin x=\sum_{k=0}^{\infty}(-1)^{k} \frac{x^{2 k+1}}{(2 k+1)!} \quad \& \quad \cos x=\sum_{k=0}^{\infty}(-1)^{k} \frac{x^{2 k}}{(2 k)!}
$$

