Lecture XLV: §13.2 Convergent sequences
Last time : We saw examples of sequences as partial sums of series:
S! Introduction:
Definition. A sequence is an infinite lest $\left\{a_{1}, a_{2}, a_{3}, \ldots\right\}$ of real numbers indexed by natural numbers. We write $\left(a_{n}\right)_{n \geqslant 1} \mid r\left(a_{n}\right)_{n \geqslant 0}$ if the first index is 0)

- a_{n} is called the $n^{n^{\text {h }} \text { lem of the sequence. }}$

EXAMPLES:
(1) $a_{n}=1$ for all n gives $\left.31,1, \ldots\right\}=$ constant
(2) $a_{n}=\frac{1-(-1)^{n}}{2}$

- $\{1,0,1,0, \ldots\}$
(3) $a_{n}=\frac{n-1}{n}-\left\{0, \frac{1}{2}, \frac{2}{3}, \frac{3}{4}, \ldots \ldots\right\}$
(4) $a_{n}=\frac{(-1)^{n+1}}{n}-\left\{1,-\frac{1}{2}, \frac{1}{3}, \frac{-1}{4}, \ldots\right\}$
(5) $a_{n}=1+\frac{1}{2}+\frac{1}{4}+\cdots+\frac{1}{2^{n}}=\frac{1-(1 / 2)^{n+1}}{1-1 / 2}=2\left(1-\frac{1}{2^{n+1}}\right)$
(6) $a_{n}=1+\frac{1}{2}+\cdots+\frac{1}{n}$
(7) $\quad a_{n}=\left(1+\frac{1}{n}\right)^{n}$
(8) $a_{n}=n^{\text {th }}$ digit in the decimal expansions 1π
(x) $(1-x)\left(1+\cdots+x^{n}\right)=1-x^{n+1}$ (last Time) Take $x=\frac{1}{2}$

Defintions: A spence $\left(a_{n}\right)_{n \geqslant 0}$ is bounded if we can find two instants $A \& B$ satisfying $A \leqslant a_{n} \leqslant B$ for all n in \mathbb{N}.

- A sequence (a_{n}) is

A sequence (an) is

- increasing if $a_{n} \leqslant a_{n+1}$ of all n (alt: $f s$ all $n \geqslant n_{0}$)
- strictly incuasing if $a_{n}<a_{n+1}$ — $\left.\quad n \geqslant n_{0}\right)$
- deceasing if $a_{n} \geqslant a_{n+1}$ — ($n \geqslant n_{0}$)
- strictly decreasing if $a_{n}>a_{n+1} — \quad$ ($\quad n \geqslant n_{0}$)
(.Alt we can think of the seperence $\left(a_{n}\right)_{n \geqslant n_{0}} f(\rightarrow$ this fixed no, ie disuggad
the fist few terms of the sequence).
GOAL Understand "long Term behavior" of sequences (ie let $n \rightarrow \infty$). Heuristic: $\lim _{n \rightarrow \infty} x_{n}=L$ mans as n gets large, the value of x_{n} gets close to L, meaning $\left|x_{n}-L\right|$ gets close to 0 .

$$
\left|x_{n}-L\right|<\varepsilon \quad f>n \gg 1 .
$$

Definition: We say $\lim _{n \rightarrow \infty} x_{n}=L$ if for every $\varepsilon>0$ there exists a positive integer N_{0} so that if $n \geqslant N_{0}$, then $|x-L|<\varepsilon$.
(Usually: No has a frucula in terms of ε.)
Teckniper to find $N_{0}=$ algebraic movipulatives, as we did when finding δ for a given ε)
Definition: A spence $\left\{x_{n}\right\}_{n \geqslant 0}$ is wortegent if it has a limit $L \mathrm{~m} \mathbb{R}$. Otherwise, we say it's divergent.

Back To Examples:
(1) $a_{n}=1$ foll n limit $=1 \quad\left(N_{0}=0\right) \quad\left|a_{n}-1\right|=|0|<\varepsilon$ frank
(2) $\left(a_{n}\right)_{n}=1,0,1,0, \ldots$ so limit cannot exist (the seperence oscillates between $0 \& 1$)
(3) $Q_{n}=\frac{n-1}{n}=1-\frac{1}{n} \underset{n \rightarrow \infty}{\longrightarrow} 1-0=1$

Formally: sister $\varepsilon>0$ pick N_{0} with $\frac{1}{N_{0}}<\varepsilon$, so $\frac{1}{\varepsilon}<N_{0}$.
Fr example, we can pick $N_{0}=1+\left\lceil\frac{1}{\varepsilon}\right\rceil$ will dos (Γ I_ceiling.)
(4) $a_{n}=\frac{(-1)^{n+1}}{n} \quad\left|a_{n}\right|=\frac{1}{n} \rightarrow 0$ so $a_{n} \longrightarrow 0$ pick $N_{0}=1+\left\lceil\frac{1}{\varepsilon}\right\rceil$
(5) $\begin{aligned} a_{n}=1+\frac{1}{2}+\cdots+\frac{1}{2^{n}} & =2\left(1-\frac{1}{2^{n+1}}\right) \xrightarrow[n \rightarrow \infty]{\longrightarrow} 2(1-0)=2 \\ & =2-\frac{1}{2^{n}}\end{aligned}$
given $\varepsilon>0$ want $\left|a_{n}-2\right|=\left|\frac{-1}{2^{n}}\right|<\varepsilon$ fo $n \geqslant N_{0}$

Need $\frac{1}{2^{n}}<\varepsilon$, so $\frac{1}{\varepsilon}<2^{n} \quad$ Take $\ln \quad \ln \left(\frac{1}{\varepsilon}\right)<n \ln 2$
This fires $\frac{\ln \left(\frac{1}{\varepsilon}\right)}{\ln 2}<n \quad$ Take $N_{0}=1+\left\lceil\frac{\ln \left(\frac{1}{\varepsilon}\right)}{\ln 2}\right\rceil$.
(6) $a_{n}=1+\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{n}$

Claim (Last lecture) $\lim _{n \rightarrow \infty} 1+\frac{1}{2}+\cdots+\frac{1}{n}=\infty$
Why? Use impoofu integral \& suffer Riemann Sums:

$$
\text { Ava }=\int_{1}^{\infty} \frac{1}{x} d x \leqslant 1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\cdots
$$

(Upper R.S.)
(7) $a_{n}=\left(1+\frac{1}{n}\right)^{n} \xrightarrow[n \rightarrow \infty]{\longrightarrow} e$

Why? We sam $\lim _{x \rightarrow 0^{+}}(1+x)^{\infty / x}=e$
(Take $\ln : \lim _{x \rightarrow 0^{+}} \frac{1}{x} \ln (1+x)=\lim _{\substack{\downarrow \\ \text { ('Kop. }}} \frac{\frac{1}{1+x}}{1}=1$ ms Take expmential)
$\frac{0}{0}$
Take $x=1 / n \longrightarrow 0$ means $n \rightarrow \infty$.
(8) $a_{n}=n^{\text {th }}$ digit of π is divergent (later).

Idea: Since a_{n} is discrete, the may way it will unseyge is if it wen custant But this will make π a rational number, and it is not!

Next time: Main techniques to determine limits.

