Lecture XLV: \$13.2 Convergent seguences

Last time : We saw examples of sequences as partial sums of series; si Introduction:

Definition. A sequence is an infinite lest 1a, az, az, az, ---- & of real numbers indered by natural numbers. We write (an) n=1 lor (an) n=0 if the just index is 0) . an is called the nth term of the sequence.

EXAMPLES :

EXAMPLES:		BOUNDED ?	INCR/DECR?
0	an=1 frall n gives 31,1, + - constant	A=B=1 /	const, so ince e deca
2	$a_n = 1$ frall n gives $31, 1, \dots, t = constant$ $a_n = \frac{1 - (-1)^n}{2} - 31, 0, 1, 0, \dots, t$	A=0, B=1 /	const, so ince ædece. none
_	$a_n = \frac{n-1}{n} - \frac{1}{2} \left(\frac{1}{2}, \frac{2}{3}, \frac{3}{4}, \dots \right)$	A=0, B=1 V	str. ina.
_	$q_n = \frac{(-1)^{n+1}}{2} - \frac{1}{2} + \frac{1}{2} +$	A=-1,6-1 /	none
	$Q_n = 1 + \frac{1}{2} + \frac{1}{4} + \dots + \frac{1}{2^n} = \frac{1 - \frac{1}{2}}{1 - \frac{1}{2}} = 2\left(1 - \frac{1}{2^{n+1}}\right)$	A=1 , B=2 🗸	sta ima . (9n+1 = 9n + 241)
\sim	$Q_{n} = 1 + \frac{1}{2} + \dots + \frac{1}{k}$	A=0, B=?? ?	$st_{(q_{n+1}=q_n+/m_{+1})}$
\bigcirc	$a_n = \left(1 + \frac{1}{n}\right)^n$	A=0 , B=????	(""+1- "" + / n+1) ??
	an = n th digit in the decimal expansion of it	A=0, B=91	ŚŚ

Definitions: A sequence (an) no is bounded it we can find two instants A & B satisfying A ≤ an ≤ B for all nin N.

• A sequence (an) is
increasing if
$$q_n \leq q_{n+1}$$
 for all n (alt: for all $n \geq n_0$)
strictly increasing if $q_n < q_{n+1}$ (_______ $n \geq n_0$)
decreasing if $q_n \geq q_{n+1}$ (_______ $n \geq n_0$)
strictly decreasing if $q_n > q_{n+1}$ (_______ $n \geq n_0$)
(Alt we can think of the sequence $(q_n)_{n \geq n_0}$ for this fixed up, is disregard

the first functions of the sequence)
GOAL Understand "Long term behavior" of sequences (ie left n-20)
Humitic: lim x_n = L means as n gets large, the value of x_n gets
does to L, meaning
$$1x_n \perp 1$$
 gets close to 0.

 $\frac{1}{100} \frac{1}{100} \frac{1}{100}$

Need
$$\frac{1}{2n} \leq E$$
, so $\frac{1}{E} \leq 2^n$ Take ln $\ln(\frac{1}{E}) \leq n \ln 2$
This gives $\frac{\ln(\frac{1}{E})}{\ln 2} \leq n$ Take $No = 1 + \int \frac{\ln(\frac{1}{E})}{\ln 2}$
(C) $a_n = 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n}$
Chain (Last lecture) $\lim_{n \to \infty} 1 + \frac{1}{2} + \dots + \frac{1}{n} = \infty$
Why? Use improper integral E upper firmann Sums:
 $\frac{1}{1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{2} + \frac{1}{3} + \frac{1}{3$

Next time : Main techniques to determine limits.