Recall lim xn = L if for every E>> we can find No in 2, 50 that if n>No then $|x_n-L| < E$. <u>Last lecture</u> : we saw many examples, but what are the main techniques? <u>SI. Limit Laws</u>:

Proposition: If
$$\lim_{n\to\infty} x_n = L$$
 & $\lim_{n\to\infty} y_n = \Pi$, then the sequences
 $l \times n + y_n \ell$, $l \times n - y_n \ell$, $l \times n \cdot y_n \ell$ are conseigent and
(1) $\lim_{n\to\infty} x_n \pm y_n = L \pm \Pi$; (2) $\lim_{n\to\infty} x_n \cdot y_n = L \cdot \Pi$
Furthermore, if $\Pi \neq 0$, the sequence $l \times \frac{x_n}{y_n} \ell_{n \ge n_0}$ converges $\epsilon \lim_{n\to\infty} \frac{x_n}{y_n} = \frac{L}{n \ge \infty}$

$$\frac{\mathsf{EXAMPLES}(\mathbf{z}_n) = \frac{n^2 + 4}{5n^2 + 6n + 7} = \underbrace{(\mathbf{z}_n)^2 + \frac{1 + 4n^2}{5n^2 + 6n + 7}}_{\text{divide by } n^2} \underbrace{(\mathbf{z}_n)^2 + \frac{1 + 4n^2}{5n^2 + 6n + 7}}_{\text{minimators demonstrators}} \underbrace{(\mathbf{z}_n)^2 + \frac{1 + 4n^2}{5n^2 + 6n + 7}}_{\text{minimators}} \underbrace{(\mathbf{z}_n)^2 + \frac{1 + 4n^2}{5n^2 + 6n + 7}}_{\text{minimators}} \underbrace{(\mathbf{z}_n)^2 + \frac{1 + 4n^2}{5n^2 + 6n + 7}}_{\text{minimators}} \underbrace{(\mathbf{z}_n)^2 + \frac{1 + 4n^2}{5n^2 + 6n + 7}}_{\text{minimators}} \underbrace{(\mathbf{z}_n)^2 + \frac{1 + 4n^2}{5n^2 + 6n + 7}}_{\text{minimators}} \underbrace{(\mathbf{z}_n)^2 + \frac{1 + 4n^2}{5n^2 + 6n + 7}}_{\text{minimators}} \underbrace{(\mathbf{z}_n)^2 + \frac{1 + 4n^2}{5n^2 + 6n + 7}}_{\text{minimators}} \underbrace{(\mathbf{z}_n)^2 + \frac{1 + 4n^2}{5n^2 + 6n + 7}}_{\text{minimators}} \underbrace{(\mathbf{z}_n)^2 + \frac{1 + 4n^2}{5n^2 + 6n + 7}}_{\text{minimators}} \underbrace{(\mathbf{z}_n)^2 + \frac{1 + 4n^2}{5n^2 + 6n + 7}}_{\text{minimators}} \underbrace{(\mathbf{z}_n)^2 + \frac{1 + 4n^2}{5n^2 + 6n + 7}}_{\text{minimators}} \underbrace{(\mathbf{z}_n)^2 + \frac{1 + 4n^2}{5n^2 + 6n + 7}}_{\text{minimators}} \underbrace{(\mathbf{z}_n)^2 + \frac{1 + 4n^2}{5n^2 + 6n + 7}}_{\text{minimators}} \underbrace{(\mathbf{z}_n)^2 + \frac{1 + 4n^2}{5n^2 + 6n + 7}}_{\text{minimators}} \underbrace{(\mathbf{z}_n)^2 + \frac{1 + 4n^2}{5n^2 + 6n + 7}}_{\text{minimators}} \underbrace{(\mathbf{z}_n)^2 + \frac{1 + 4n^2}{5n^2 + 6n + 7}}_{\text{minimators}} \underbrace{(\mathbf{z}_n)^2 + \frac{1 + 4n^2}{5n^2 + 6n + 7}}_{\text{minimators}} \underbrace{(\mathbf{z}_n)^2 + \frac{1 + 4n^2}{5n^2 + 6n + 7}}_{\text{minimators}} \underbrace{(\mathbf{z}_n)^2 + \frac{1 + 4n^2}{5n^2 + 6n + 7}}_{\text{minimators}} \underbrace{(\mathbf{z}_n)^2 + \frac{1 + 4n^2}{5n^2 + 6n + 7}}_{\text{minimators}} \underbrace{(\mathbf{z}_n)^2 + \frac{1 + 4n^2}{5n^2 + 6n + 7}}_{\text{minimators}} \underbrace{(\mathbf{z}_n)^2 + \frac{1 + 4n^2}{5n^2 + 6n + 7}}_{\text{minimators}} \underbrace{(\mathbf{z}_n)^2 + \frac{1 + 4n^2}{5n^2 + 6n + 7}}_{\text{minimators}} \underbrace{(\mathbf{z}_n)^2 + \frac{1 + 4n^2}{5n^2 + 6n + 7}}_{\text{minimators}} \underbrace{(\mathbf{z}_n)^2 + \frac{1 + 4n^2}{5n^2 + 6n + 7}}_{\text{minimators}} \underbrace{(\mathbf{z}_n)^2 + \frac{1 + 4n^2}{5n^2 + 6n + 7}}_{\text{minimators}} \underbrace{(\mathbf{z}_n)^2 + \frac{1 + 4n^2}{5n^2 + 6n + 7}}_{\text{minimators}} \underbrace{(\mathbf{z}_n)^2 + \frac{1 + 4n^2}{5n^2 + 6n + 7}}_{\text{minimators}} \underbrace{(\mathbf{z}_n)^2 + \frac{1 + 4n^2}{5n^2 + 6n + 7}}_{\text{minimators}} \underbrace{(\mathbf{z}_n)^2 + \frac{1 + 4n^2}{5n^2 + 6n + 7}}_{\text{minimators}} \underbrace{(\mathbf{z}_n)^2 + \frac{1 + 4n^2}{5n^2 + 6n + 7}}_{\text{minimators}} \underbrace{(\mathbf{z}_n)^2 + \frac{1 + 4n^2}{$$

$$(2) = n = n + i - n = (n + i - n)(n + i + n) = n + i - n = 1 - n = 0$$

$$(n + i + n) = n + i + n = 1 - n = 0$$

$$(n + i + n) = n + i + n = 1$$

$$(n + i + n) = n + i + n = 1$$

Sz. Squeeze Thurum:
Thurum: Suppose 3 sequences 29nt, 36nt, 3x.t. satisfy:
(1) Qn
$$\leq x_n \leq b_n$$
 for all n large enough
(2) $\lim_{n \to \infty} q_n = \lim_{n \to \infty} b_n = L$
Thun, $3x_n t_{n \in N}$ is unreagent & $\lim_{n \to \infty} x_n = L$

Note: Some haffins if in (2) we have
$$L = \infty$$
, then $\frac{1}{2} \times 1$ also has
limit = $\infty = \frac{1}{2} \times \infty$ it's divergent.
EXAMPLES: $0 \times n = \frac{1}{n!}$ $a_{n} = 0 \le x_{n} \le \frac{1}{n} = b_{n}$ to $x_{n} \longrightarrow \infty$.
 $\frac{1}{2}$
 $(2) \times n = \frac{a}{n!}$ for a >0 fined (Levin: $X_{n} \longrightarrow \infty$)
 $Why? \quad 0 \le X_{n}$ so use take $a_{m} = 0$ in Squeege Theorem
Need to find be with $x_{n} \in b_{n}$ for all n large enough with $\lim_{n \to \infty} b_{n-1} = \frac{a}{2} + \frac{1}{2} \times x_{n-1}$
Side No >0 with $\frac{a}{n-1} < \frac{a}{2} + \frac{1}{2} + \frac{1}{2} \times x_{n-1}$
Side No >0 with $\frac{a}{n-1} < \frac{1}{2} + \frac{a}{N_{0} \cdot 1} = \frac{aN_{0}}{N_{0} \cdot 1} = \frac{a}{N_{0} \cdot 1} = \frac{a}{N_{0} \cdot 1} = \frac{a}{N_{0} \cdot 1} + \frac{a}{N_{0} \cdot 1} + \frac{a}{N_{0} \cdot 1} + \frac{a}{N_{0} \cdot 1} = \frac{a}{N_{0} \cdot 1} + \frac{a}{N$

There 2 Assume 3×45 is deceasing (
$$x_n \ge x_{n+1}$$
 for all a large enverge).
Then, 5×45 is convergent if and marks it is trunded (from below).
Observes : It suffices to confirm Theorem 1. Taking $y_n = -x_n$ will confirm Theorem 2.
To confirm Theorem 1 we need to prove both implications : The direction (=>) is
the in proceeds one write it repeated is
 15 confirm Theorem 1 we need to prove both implications : The direction (=>) is
the in proceeds one write it repeated is
 15 confirm Theorem 1 we need to prove both implications : The direction (=>) is
the in proceeds one write it repeated is
 15 confirm Theorem 1 we need to prove both implications : The direction (=>) is
the in proceeds one would different bounds.
 $15 \times 1 < x_n < L+1$ for all $n \ge N_0$.
 $15 \times 1 < x_n < L+1$ for all $n \ge N_0$.
 $15 \times 1 < x_n < L+1$ for all $n \ge N_0$.
 $15 \times 1 < x_n < L+1$ for all $n \ge N_0$.
 $15 \times 1 < x_n < L+1$ for $1 \le N_0 = 15$
 $N = \min 3 \times 1, \times 2, \dots, \times N_0 = 15$
 $N = \min 3 \times 1, \times 2, \dots, \times N_0 = 15$
 $N = \min 3 \times 1, \times 2, \dots, \times N_0 = 15$
 $N = \min 3 \times 1, \times 2, \dots, \times N_0 = 15$
 $N = \min 3 \times 1, \times 2, \dots, \times N_0 = 15$
 $N = \max 3 \times 1, \times 2, \dots, \times N_0 = 15$
 $N = \max 3 \times 1, \times 2, \dots, \times N_0 = 15$
 $N = \max 3 \times 1, \times 2, \dots, \times N_0 = 15$
 $N = \max 3 \times 1, \times 2, \dots, \times N_0 = 15$
 $N = \max 3 \times 1, \times 2, \dots, \times N_0 = 15$
 $N = \max 3 \times 1, \times 2, \dots, \times N_0 = 15$
 $N = \max 3 \times 1, \times 2, \dots, \times N_0 = 15$
 $N = \max 3 \times 1, \times 2, \dots, \times N_0 = 15$
 $N = \max 3 \times 1, \times 2, \dots, \times N_0 = 15$
 $N = \max 3 \times 1, \times 2, \dots, \times N_0 = 15$
 $N = \max 3 \times 1, \times 2, \dots, \times N_0 = 15$
 $N = \max 3 \times 1, \times 2, \dots, \times N_0 = 15$
 $N = \max 3 \times 1, \times 2, \dots, \times N_0 = 10$
 $N = \max 3 \times 1, \times 2, \dots, \times N_0 = 10$
 $N = \max 3 \times 1, \times 2, \dots, \times N_0 = 10$
 $N = \max 3 \times 1, \times 2, \dots, \dots \times N_0 = 10$
 $N = \max 3 \times 1, \times 2, \dots, \dots \times N_0 = 10$
 $N = \max 3 \times 1, \times 2, \dots, \dots \times N_0 = 10$
 $N = \max 3 \times 1, \times 2, \dots, \dots \times N_0 = 10$
 $N = \max 3 \times 1, \times 2, \dots, \dots \times N_0 = 10$
 $N = \max 3 \times 1, \times 2, \dots \times N_0 = 10$
 $N = \max 3 \times 1, \times 2, \dots \times N_0 = 10$
 $N = \max 3 \times 1, \times 2, \dots \times N_0 = 10$
 $N = \max 3 \times 1, \times 2, \dots \times N_0 = 10$
 $N = \max 3 \times 1, \times 2, \dots \times N_0 = 10$
 $N = \max 3 \times 1, \times 2, \dots \times N_0 = 10$
 $N = \max 3 \times 1, \times$

infimum = Lightest appen bound

$$\frac{2}{05}: Q = internal numbers don't have this peoplety
S=2x in Q with $x^2 < 21$ has upper bounds ($z_3 + y_{1,...}$)
But it has no 1.9.5 because T_2 is not in Q.
Why is $L = \lim_{n \to \infty} x_n^2$. Pick $z > 0$. What G find No with $|X_n| | |z_n| ||z_n| | |z_n| | |z_n| ||z_n| | |z_n| ||z_n| | |z_n| ||z_n|$$$

L46 |S

Take
$$\ln : \ln[f(x)] = x(\frac{\ln x}{3^{n}}) = x(\ln x - \ln(3^{n}))$$

 $= x \ln x - x^{2}\ln(3)$
 $= x^{2}(\frac{\ln x}{x} - \ln 3)$
We know $\lim_{X \to \infty} \frac{\ln(x)}{x} = \lim_{X \to \infty} \frac{1}{x} = 0$
 $\frac{1}{\infty} \lim_{X \to \infty} \frac{1}{x^{2}} = e^{-\infty} = 0.$
Thus $\lim_{X \to \infty} \frac{x^{2}}{3^{n}} = e^{-\infty} = 0.$
In particular $\frac{n^{n}}{3^{n}} \lim_{X \to \infty} \frac{1}{n \to \infty} 0$
(1) $\underline{a < 0}$ White $a = -b$ with $b > 0$ so $3^{n} = 3^{n^{-1}} = 3^{n^{-1}}$
(a) $\underline{a < 0}$ White $a = -b$ with $b > 0$ so $3^{n} = 3^{n^{-1}} = 3^{n^{-1}}$
(b) $\underline{a < 0}$ White $a = -b$ with $b > 0$ so $3^{n} = 3^{n^{-1}} = 3^{n^{-1}}$
(c) $\underline{a = 0}$ Thus $n^{0} = 1$ a so $x_{n} = \frac{n^{n}}{3} \xrightarrow{n \to \infty} \infty$
(d) $\underline{a > 0}$ thus $3^{n} = \sqrt{3^{n}} = \infty$ $4 n^{n} = \infty$ (so u^{2}
(e) $\underline{a = 0}$ Thus $3^{n} = \sqrt{3^{n}} = \infty$ $4 n^{n} = \infty$ (so u^{2}
(f) $\underline{a > 0}$ thus $3^{n} = \sqrt{3^{n}} = x^{n}(x \frac{\ln x}{2^{n}} - \ln 3) = x^{n}(\frac{\ln x}{2^{n}} - \ln 3)$
(g) $\underline{a > 0}$ thus $3^{n} = x^{n}(x \frac{\ln x}{2^{n}} - \ln 3) = x^{n}(\frac{\ln x}{2^{n}} - \ln 3)$
(here $x^{n-1} = 0$
(i) $\frac{1}{x^{n-1}} = \frac{1}{x^{n}} = \frac{1}{x^{n}} = \frac{1}{x^{n}} = 0$
(j) $\frac{1}{x^{n-1}} = \frac{1}{x^{n}} = \frac{1}{x^{n}} = \frac{1}{x^{n}} = 0$
(j) $\frac{1}{x^{n-1}} = \frac{1}{x^{n}} = \frac{1}{x^{n}} = \frac{1}{x^{n}} = \infty$.