Lecture XLVII: $\$ 13.3$ Convergent \& divergent series
S1 Tram sequences To series:
Detrition: If $\left\{a_{n}\right\}_{n}=\left\{a_{1}, a_{2}, a_{3}, \ldots\right\}$ is a sequence, the series with general
Term a_{n} is the expression $\sum_{n=1}^{\infty} a_{n}=a_{1}+a_{2}+a_{3}+\cdots$
Example (Lecture 45) $\sum_{n=0}^{\infty} \frac{1}{10^{n}}=1+\frac{1}{10}+\frac{1}{10^{2}}+\cdots=$ geometric series neth pencel

$$
=\frac{1}{1-1 / 10}=\frac{10}{9}
$$ tum $a_{n}=\frac{1}{10 n}$

Q: How to inteuput $\sum_{n=1}^{\infty} a_{n}$?
A Consider the sequence of partial sums

$$
\begin{align*}
& S_{1}=a_{1} \\
& S_{2}=a_{1}+a_{2} \\
& \vdots \tag{}\\
& S_{n}=a_{1}+a_{2}+\cdots+a_{n}=\sum_{j=1}^{n} a_{j}
\end{align*}
$$

Example: $s_{1}=1$

$$
S_{2}=1+\frac{1}{10}
$$

$$
S_{n}=1+\frac{1}{10}+\cdots+\frac{1}{10^{n-1}}
$$

(*) $1-x^{n}=(1-x)\left(1+x+\cdots+x^{n-1}\right)$ fo $x=\frac{1}{10}$ sires $S_{n}=\frac{1-\left(\frac{1}{10}\right)^{n}}{1-1 / 10}=\frac{10}{9}\left(1-\frac{1}{10^{n}}\right)$
\leadsto Use the partial sums to define the series as then limit.
If: $\sum_{j=1}^{\infty} a_{j}=\lim _{n \rightarrow \infty} \sum_{j=1}^{n} a_{j}=\lim _{n \rightarrow \infty} S_{n}$.

Definition: If the limit if partial sums exists and it's finite $(=L i m \mathbb{R})$, we soy that the series cansuges ($T_{0} L$). Alternative : L is the sum of the series.

If the racial seems have no unit or its limit is $\pm \infty$, we say that the the series diverges.

Nre: This definition is sery mimilar to sue appwrech to impoofer inteppals. ${ }_{n}^{47(0)}$

$$
\int_{1}^{\infty} f(x) d x=\lim _{t \rightarrow \infty} \int_{1}^{t} f(x) d x \leadsto \sum_{j=1}^{\infty} a_{j}=\lim _{n \rightarrow \infty} \sum_{j=1}^{n} a_{j} .
$$

We will use the connection To Riemann Suns To ampute vacioes sumes of serie \& show divengence (eg harmanic seies $\sum_{n=1}^{\infty} \frac{1}{n}$ direeges because $\int_{1}^{\infty} \frac{1}{x} d x d o e$)
§2 Geomtric Series:
Becall: $(1-x)\left(1+x+\cdots+x^{n}\right)=1-x^{n+1} \operatorname{mix}_{x \neq 1} 1+x+\cdots+x^{n}=\frac{1-x^{n+1}}{1-x}$ fr $x \neq 1$
(1) $\lim _{n \rightarrow \infty} \frac{1+x^{n+1}}{1-x}=\frac{1}{1-x}\left(1-\lim _{n \rightarrow \infty} x^{n+1}\right)$ orly gires a memter when $|x|<1$

- So Geonstic series $=\sum_{n=0}^{\infty} x^{n}=\frac{1}{1-x}$ whenever $|x|<1$
- Furtheumore, the series diserges if $|x| \geq 1$:
- x^{n+1} seillates if $x \leqslant-1$ so it has n limit as $n \rightarrow \infty$

$$
\lim _{n \rightarrow \infty} x^{n+1}=\infty \quad \text { if } x \geq 1 \text {. }
$$

Variant: What if we start somewhere other than o?

$$
\begin{aligned}
\sum_{n=k}^{\infty} x^{n}=x^{k}+x^{k+1}+\cdots & \left.=x^{k} \mid 1+x+x^{2}+\cdots\right) \\
& =x^{k} \sum_{j=0}^{\infty} x^{j}=\frac{x^{k}}{1-x} \text { fo }|x|<1
\end{aligned}
$$

Note: If $k=0$, then $x^{0}=1$ \& we recore the riginal fromela.
EXAMPLE: $\quad \sum_{n=3}^{\infty} \frac{1}{2^{n}}=\frac{1}{2^{3}}+\frac{1}{2^{4}}+\frac{1}{2^{5}}+\cdots=\frac{1}{8}\left(1+\frac{1}{2}+\frac{1}{4}+\cdots\right)=\frac{1}{8} \frac{1}{1-1 / 2}=\frac{1}{4}$
Allunalire appwach: Add and substract missing terms:

$$
\begin{aligned}
& \sum_{n=0}^{\infty} \frac{1}{2^{n}}=1+\frac{1}{2}+\cdots=\left(1+\frac{1}{2}+\frac{1}{2^{2}}\right)+\left(\frac{1}{2^{3}}+\frac{1}{2^{4}}+\cdots\right) \\
& \text { So } \sum_{n=3}^{\infty} \frac{1}{2^{n}}=\sum_{n=0}^{\infty} \frac{1}{2^{n}}-\left(1+\frac{1}{2}+\frac{1}{4}\right)=2-\frac{7}{4}=\frac{1}{4}
\end{aligned}
$$

Same alternative approach works in general.

$$
\sum_{n=0}^{\infty} x^{n}=\left(1+x+x^{2}+\cdots+x^{k-1}\right)+\left(x^{k}+x^{k+1}+\cdots\right) \quad f_{2}|x|<1
$$

So $\sum_{n=k}^{\infty} x^{n}=\sum_{n=0}^{\infty} x^{n}-\left(1+x+\cdots+x^{n-1}\right)=\frac{1}{\underset{|x|<1}{1} \frac{1}{1-x}}-\frac{1-x^{k}}{1-x}=\frac{x^{k}}{1-x}$
33. Application:

Peopsition: The rely numbers with decimal expansions with repeated patterns are rational numbers.
Examples: $0.33 \cdots=0 . \overline{3}=\frac{1}{3} \quad 1.11 \cdots=1 . \bar{T}=\frac{10}{9}$
Why? Say z has a decimal expansion with repeated patterns $\& 0 \leqslant z<1$. Wute $z=0 \underbrace{0 . a_{2} a_{3} \cdots a_{n}}_{\text {non repeated pant }} \underbrace{a_{n+1} \cdots \cdots a_{n+s}}_{\begin{array}{c}\text { s terms in } \\ \text { repenting patter }\end{array}} a_{\text {reseated prtemen }}^{a_{(n+3)+1} \cdots a_{(n+2 s)}} \cdots \cdots$
Write $b_{1} \ldots$ bs for the repeated patter
So $z=\sum_{k=1}^{\infty} \frac{a_{k}}{10^{k}}=\underbrace{\sum_{k=1}^{n} \frac{a_{k}}{10^{k}}}_{a \ln Q}+\underbrace{\frac{b_{1}}{10^{n+1}}+\cdots+\frac{b_{s}}{10^{n+5}}}_{y=\frac{1}{10^{n}}\left(\frac{b_{1}}{10}+\cdots+\frac{b_{s}}{10^{0}}\right)}+\underbrace{\frac{b_{1}}{10^{n+5}+1}+\cdots+\frac{b_{s}}{10^{n+2 s}}+\cdots}_{\frac{1}{10^{3}} y}$

$$
\begin{aligned}
& =a+y+\frac{y}{\frac{y}{10^{5}}+\frac{y}{10^{2 s}}+\cdots} \\
& =a+y(\underbrace{1+\frac{1}{10^{5}}+\frac{1}{10^{2 s}}+\cdots})=a+y \cdot \frac{1}{1-\frac{1}{10^{5}}} \text { in } \mathbb{Q}
\end{aligned}
$$

geometric shies for $x=\frac{1}{10^{5}}$

- Now, if z has a repeated pattern but $z<0$ or $z>1$, we can add an integer $N T_{0}$ it $(\lfloor Z\rfloor)$ so that $Z+N$ has a repeated pattern (same as Z) and now $\theta \leq Z+N<1$. If $z+N$ is in Q, so is z.

Q: How to build a decimal expansion pr a rational numbers?
given z we write $z=N+\frac{p}{q}$ with N integer \& $0<q<p$
\rightarrow rational $\&$ in $[0,1)$
by using ling derision on $z=\frac{a}{b}$.
So decimal expansion of z \& $\frac{1}{f}$ agree.
By sun Proportion, we should han a repeated pattern fr $\frac{1}{+}$. Hoo do we find it?
EXAMPLE:
3. 1142857

$$
\frac{22}{7}=3.142857142857 \ldots
$$

$$
=3 . \overline{142857}
$$

$$
=\frac{3}{a^{\prime}}+\left(\frac{1}{10^{1}}+\frac{4}{10^{2}}+\frac{2}{10^{3}}+\frac{8}{10^{4}}+\frac{5}{10^{5}}+\frac{7}{10^{6}}\right) .
$$

$$
\left(1+\frac{1}{10^{6}}+\frac{1}{10^{36}}+\cdots\right)
$$

$$
=a+y\left(\frac{1}{1-\frac{1}{106}}\right)=a+y \frac{10^{6}}{10^{6}-1}
$$

$$
a=3
$$

$$
y=\frac{142857}{10^{6}}
$$

General Procedure: Given z vatimal
STEP 1: Use long dirisin to write $z=N+x$ with x in \mathbb{Q} ines
STEP 2: $x=1 \quad 0 \leq x<1$
: $x=\frac{1}{q} \quad 0<q<p$ \& compute the decimal expansion of x by doing long division, adding 0 's T_{0} the remainder. Since the umaindess are $0,1,2, \ldots, p^{-1}$, this process cannot go fever without refetitives. The pattern will then consist of all ratios that produced the sting of remainders when the repetition firs Took place.
Consequence: $\pi, \sqrt{2}$ are not national, so they decimal expansive have no ufeatid patterns!

