Lecture LI: \$135 Series of NM-negative terms. Comparison Tests
Comparison Test 1 Fix 2 sequences of nm-negative terms
$$3an_{n}a + 3bn_{n}$$
.
Assume $0 \le a_{n} \le b_{n}$ for all n
Then: (1) If $\sum_{n=1}^{\infty} b_{n}$ converges with sum L, then $\sum_{n=1}^{\infty} a_{n}$ converges with sum SL.
(2) If $\sum_{n=1}^{\infty} a_{n}$ diverges, so does $\sum_{n=1}^{\infty} b_{n}$.

EXAMPLES: ()
$$\frac{1}{n} < \frac{1}{4nn}$$
 for all $n > 1$ ($y = lnn$ is always below the line $y = x$)
37 $\sum_{n=2}^{\infty} \frac{1}{4nn}$ diverges become $\sum_{n=2}^{\infty} \frac{1}{5^n}$ does $\frac{1}{5^n} = \frac{1}{5^n}$
(2) $\sum_{n=0}^{\infty} \frac{1}{3^n+1}$ converges become $\sum_{n=1}^{\infty} \frac{1}{5^n}$ does $\frac{1}{3^n+1} = \frac{1}{3^n}$
Furthermore $\sum_{n=0}^{\infty} \frac{1}{3^n+1} = \sum_{n=0}^{\infty} \frac{1}{3^n} = \frac{1}{1-\frac{1}{5}} = \frac{3}{2}$
Why does comparison Test 1 work? Assume $0 \le q_n \le b_n$ for all $n = 1$ take
partial sums on both sides
 $0 \le S_n = q_1 + \dots + q_n \le S_n = b_1 + \dots + b_n$
Since $S_n \ge S_n$ are both increasing they ensage if they are breaded above 4 diverge otherwise.
() If $S_n \longrightarrow L$ then $S_n \le L$ to n have ensage (L = least upber

(1) If
$$S_n \longrightarrow L$$
, then $S_n \le L$. for a large enough $(L = lenst upper Sound)$
Then $S_n \le \tilde{S}_n \le L$ for a large enough, so S_n is bounded & it
converges to L' with $L' \le L$.

(2) If Sn diverges, then its limit is
$$\infty$$
 (Lecourse its increasing aublended)
Then \tilde{S}_n also has $\lim_{n \to \infty} \tilde{S}_n = \infty$ so $\sum_{n=1}^{\infty} b_n$ diverges.

Obs: We can extend the result if the conditions hold for a large enough (say n > no). by runtiling with veries by separating the first noterms:

$$\sum_{n=1}^{\infty} a_n = a_1 + \dots + a_{n+1} + \sum_{i=1}^{\infty} a_i$$

$$\sum_{n=1}^{\infty} b_n = b_1 + \dots + b_{n+1} + \sum_{i=1}^{\infty} b_n$$
The has a thing
$$\sum_{n=1}^{\infty} a_n = \sum_{n=1}^{\infty} b_n + (a_{n+1}) + \dots + (a_{n+1} - b_{n+1}).$$
EXAMPLE
$$\sum_{n=1}^{\infty} \frac{n+1}{n^n} \quad \text{converges } b_n + (a_{n+1}) + \dots + (a_{n+1} - b_{n+1}).$$
EXAMPLE
$$\sum_{n=1}^{\infty} \frac{n+1}{n^n} \quad \text{converges } b_n \text{ converges } a_n = \sum_{n=1}^{\infty} b_n + (a_{n+1}) + \dots + (a_{n+1} - b_{n+1}).$$
EXAMPLE
$$\sum_{n=1}^{\infty} \frac{n+1}{n^n} \quad \text{converges } b_n \text{ converges } a_n = \sum_{n=1}^{\infty} a_n + (a_{n+1}) + \dots + (a_{n+1} - b_{n+1}).$$
EXAMPLE
$$\sum_{n=1}^{\infty} \frac{n+1}{n^n} \quad \text{converges } b_n \text{ converges } a_n = \sum_{n=1}^{\infty} a_n + (a_{n+1}) + (a_{n+1} - b_{n+1}).$$
EXAMPLE
$$\sum_{n=1}^{\infty} \frac{n+1}{n^n} \quad \text{converges } b_n \text{ converges } a_n = \sum_{n=1}^{\infty} a_{n+1} + a_n \leq \sum_{n=1}^{\infty} a_{n+1} + a_n = \sum_{n=1}^{\infty} a_n = a$$

gives a curregent sequence.

Now:
$$\frac{q_n}{b_n} = \frac{n+2}{2n^3-3} / \frac{1}{n^2} = \frac{n^3+2n}{2n^3-3} = \frac{1+\frac{2}{n^2}}{2-\frac{3}{n^3}} = \frac{1+\frac{2}{n^3}}{2-\frac{3}{n^3}} = \frac{1+\frac{2}{n^3}}{2-\frac{3}{n^3}$$

Observation: Limit Companien Test are useful when we compare to

$$\sum_{n=1}^{\infty} \frac{1}{n}$$
, $\sum_{n=1}^{\infty} \frac{1}{n^2}$, $\sum_{n=1}^{\infty} \frac{1}{n}$,

(p-series)
$$\sum_{n=1}^{\infty} \frac{1}{np}$$
 unruges if $p>1$ & diverges for $p \leq 1$ (Lecture 19)

• If
$$p \leq 1$$
, then $n^{p} \leq n$ so $\frac{1}{n^{p}} \neq \frac{1}{n}$ By Companism Test,
 $\sum_{n=1}^{\infty} \frac{1}{n^{p}}$ deverges for $p \leq 1$ because $\sum_{n=1}^{\infty} \frac{1}{n}$ diverges.

• If
$$p \ge 2$$
 then $n^p \ge n^2$ so $\frac{1}{n^p} \le \frac{1}{n^2}$ so by comparison,
 $\sum_{n=1}^{\infty} \frac{1}{n^p}$ converges $\int T^p p \ge 2$

Take
$$S_n = \sum_{k=1}^{n} \sum_{k=1}^{n} We$$
 will show that $S_n < \frac{2^{p-1}}{2^{p-1}}$
So $(S_n)_n$ is portion, incuaning a bounded above, so it next conseque.
Given n , pick m with $n < 2^m$. Then;
 $S_n = \sum_{k=1}^{n} \sum_{k=1}^{n} \sum_{k=1}^{n-1} \sum_{k=1}$

1213

$$S_{n} \leq 1 + \frac{1}{2^{p}} \cdot 2 + \frac{1}{q^{p}} \cdot q + \dots + \frac{1}{(2^{n-1})^{p}} \cdot 2^{n-1}$$

$$= 1 + \frac{1}{2^{p-1}} + \frac{1}{q^{1-1}} + \dots + \frac{1}{(2^{n-1})^{p-1}}$$

$$= 1 + \frac{1}{2^{p-1}} + \frac{1}{(2^{p-1})^{2}} + \dots + \frac{1}{(2^{p-1})^{n-1}}$$

$$= \sum_{k=0}^{n-1} \frac{1}{(2^{p-1})^{k}} \leq \sum_{k=0}^{n-1} \frac{1}{(2^{p-1})^{k}} = \frac{1}{1 - \frac{1}{\sqrt{p+1}}} = \frac{2^{p-1}}{2^{p-1}}$$
We get the brand for S_{n} we use boding for. $\frac{1}{2^{p-1}} \leq 1 + \frac{1}{2^{p-1}}$

$$Me get the brand for S_{n} we use boding for. $\frac{1}{2^{p-1}} \leq 1 + \frac{1}{2^{p-1}}$

$$Me get the brand for S_{n} we use boding for. $\frac{1}{2^{p-1}} \leq 1 + \frac{1}{2^{p-1}}$

$$Me get the brand for S_{n} we use boding for. $\frac{1}{2^{p-1}} \leq 1 + \frac{1}{2^{p-1}}$

$$Me get the brand for S_{n} we use boding for. $\frac{1}{2^{p-1}} \leq 1 + \frac{1}{2^{p-1}}$

$$Me get the brand for S_{n} we use boding for. $\frac{1}{2^{p-1}} \leq 1 + \frac{1}{2^{p-1}} \leq 1 + \frac{1}{2^{p-1}}$

$$Me get the brand for S_{n} we use boding for. $\frac{1}{2^{p-1}} \leq 1 + \frac{1}{2^{p-1}} = \frac{1}{n^{p}/2}$

$$\frac{q_{n}}{p_{n}} = \frac{1}{n^{p}/2} = \frac{1}{n^{p}/2} + \frac{1}{n^{p}/2} = \frac{1}{(1+1)^{p}/2} + \frac{1}{n^{p}/2} = \frac{1}{(1+1)^{p}/2} + \frac{1}{n^{p}/2} = \frac{1}{n^{p}/2} + \frac{1}{n^{p}/2} = \frac{1}{n^{p}/2} + \frac{1}{n^{p}/2} = \frac{1}{n^{p}/2} + \frac{1}{n^{p}/2} = \frac{1}{n^{p}/2} + \frac{1}{n^{p}/2} + \frac{1}{n^{p}/2} = \frac{1}{n^{p}/2} + \frac$$$$$$$$$$$$$$

Consequence : Reamonying a consergent non-mogative sequence does not
change The sum.
Why? Say we manange to b_n : (eg: $b_1 = q_{10}$, $b_2 = q_3$, $b_3 = q_1$, $b_4 = q_{00}$)
$\sum_{n=1}^{\infty} a_n = a_1 + a_2 + a_3 + a_4 + \dots = S$ Call Sn the partial sums
$\sum_{n=1}^{\infty} b_n = a_{10} t a_3 + a_{1} + a_{200} + \cdots$ Call B_n
We see $B_{4} = b_{1} + b_{2} + b_{3} + b_{4} = 9_{10} + q_{3} + q_{1} + q_{200} \leq q_{1} + q_{2} + \dots + q_{200} = S_{200}$
So $B_{4} \leq S_{200} \leq \sum_{n=1}^{\infty} q_{n} = S$.
. Same idea works in zeneral : Bn ≤ S fr all n
But (Br) are increasing, so the carrenge & their limit is 55.
· Song Zbn = B We know BSS.
. But (an) is a manangement of (ba), so by the same argument
we see that $\sum_{n=1}^{\infty} a_n = S \leq B$ (switching the roles of (a_n) , (b_n) (include: $S \leq B$ is $B \leq S$. $S = B$.)
Conclude, SEB & BES 50 S=B S&B)