Lecture LII: §13.5 Comparison Tests
\$13.7 Ratio \& Roast Tests
§13.8 The Alternating series Test
Comparison Test 1 Fix 2 sequences of $n n-n y$ arise terms $\left\{a_{n}\right\}_{n}$ \& $\left\{b_{n}\right\}_{n}$.
Assume $0 \leq a_{n}<b_{n}$ fr all n longe enough
Then: (1) If $\sum_{n=1}^{\infty} b_{n}$ converges withsena L, then $\sum_{n=1}^{\infty} a_{n}$ aconsuges
(2) If $\sum_{n=1}^{\infty} a_{n}$ diverges, so does $\sum_{n=1}^{\infty} b_{n}$

Limit Comparison Test: Suppose $\left.\left.3 a_{n}\right\}, 3 b_{n}\right\}$ che non-negatise sequences with $b_{n}>0$ fr n longe enough. Assume $\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=L>0$. Then, either both $\sum_{n=1}^{\infty} a_{n} \& \sum_{n=1}^{\infty} b_{n}$ converge r they both diverge. (same behavior!)
31. Application 1: Proof of Ratio \& Root Tat

Ratio \& Root Tests: Pick $3 a_{n} 1$, a sequence of pritive integers (p p n large enough). Assume either $\lim _{n \rightarrow \infty} \frac{a_{n+1}}{a_{n}}=L \geqslant \lim _{n \rightarrow \infty} \sqrt[n]{a_{n}}=\pi$ exist. Then:

$$
\left(a_{n}>0 p\right.
$$

$$
\sum_{n=1}^{\infty} a_{n}= \begin{cases}\text { converges if } & L<1 \\ \text { diverges if } & L>1 \\ \text { don't know } & \text { if } L=1 \\ & \text { RATIO TE }\end{cases}
$$

n longe lough)
$M<1$

$$
n>1
$$

$\Gamma=1 \quad$ (anything can happen!)
Obscuration Appendix AIL has a refinement if $L=1 \pi \Pi=1$ \& the limit cones fun below r abe 1 .
EXAMPLES:
(1) $\sum_{n=0}^{\infty} \frac{n^{2}}{2^{n}}$ converges by Ratio $T_{\text {et }} \frac{(n+1)^{2}}{2^{n+1}} / \frac{n^{2}}{2^{n}}=\left(\frac{n+1}{n}\right)^{2} \frac{1}{2} \longrightarrow \frac{1}{2}<1$
(Alt: Root Test $\sqrt[n]{\frac{n^{2}}{2^{n}}}=\frac{(\sqrt[n]{n})^{2}}{2} \rightarrow \frac{1^{2}}{2}=\frac{1}{2}<1$

$$
\text { (} \sqrt[n]{n} \rightarrow 1 \text { because } \ln \sqrt[n]{n}=\frac{\ln n}{n} \rightarrow 0 \text { by ('Hôpital) }
$$

(2) $\sum_{n=2}^{\infty} \frac{1}{(\ln n)^{n}}$ cursuges by Root Test $\left.\sqrt[n]{\left(\frac{1}{(\ln n}\right)^{n}}=\frac{1}{\ln n} \rightarrow 0<1^{180}\right)$

Proof We use Comparisn Test with the geometric series $\sum_{n=0}^{\infty} c^{n}$ (or a tail of if) fr a suitable $r>0$
Ratio Test: (1) Suppose $L<1$ \& pick r with $L<r<1$ \& set
 Since $\lim _{n \rightarrow \infty} \frac{a_{n+1}}{a_{n}}=L$, we can find n_{0} so that $L-\varepsilon<\frac{a_{n+1}}{a_{n}}<L+\varepsilon=r$ fo $n \geqslant n_{0}$

So $a_{n_{0}+1}<r a_{n_{0}}$

$$
\begin{aligned}
a_{n_{0}+2} & <r a_{n_{0}+1}<r^{2} a_{n_{0}} \\
a_{n_{0}+3} & <r a_{n_{0}+2}<r^{3} a_{n_{0}} \\
\vdots & <r^{k} a_{n_{0}} \quad f r \text { all } k \geqslant 1
\end{aligned}
$$

So Tail $=\sum_{m=n_{0}}^{\infty} a_{m} \leqslant \sum_{m=n_{0}}^{\infty} r^{m} a_{m_{0}}=$ $=a_{n_{0}} \sum_{m=n_{0}}^{\infty} r^{m} \underset{\substack{m \\ r<1}}{=q_{0}} \frac{r^{n_{0}}}{1-r}$

By Cmpurism Test 1: $\sum_{m=n_{0}}^{\infty} a_{m}$ consenges, so $\sum_{m=1}^{\infty} a_{m}$ also converges. (Tail)
(2) Suppose $L>1$ then $a_{n+1}>a_{n}>0$ fo all k large enough
 $n \geqslant n_{0}$

$$
\text { So } a_{n} \nrightarrow 0 \quad\left(a_{n} \geqslant a_{n 0} \text { if } n \geqslant n_{0}\right)
$$

This ensures $\sum_{n=1}^{\infty} a_{n}$ diverges.
Root Test (1) Suppre $M<1$ \& pick r with $M<r<1$ \& sit $\varepsilon=r-M$

Since $\lim _{n \rightarrow \infty} \sqrt[n]{a_{n}}=M$ we can fired $n_{0}>0$ so that $\quad \Pi-\varepsilon<\sqrt[n]{a_{n}}<\Pi+\varepsilon=r$ fo $n \geqslant n_{0}$.
In particular: $a_{n}<r^{n}$ for $n \geqslant n_{0}$.

Then $\sum_{n=n_{0}}^{\infty} a_{n} \leqslant \sum_{n=n_{0}}^{\infty} r^{n}=\frac{r^{n_{0}}}{1-r} \quad$ because $0<r<1$
Again, by Comparism Test 1, $\sum_{n=n}^{\infty} a_{n}$ conserges so $\sum_{n=1}^{\infty} a_{n}$ also converges (Gail)
(2) Now assume $M>1$ \& pick r with $M>r>1$. Set $\varepsilon=M-r>0$
 so that $r=\Pi-\varepsilon<{ }^{n} \Gamma_{n}<\Pi+\varepsilon \quad$ if $n \geqslant n_{0}$.
Them $r^{n}<a_{n}$ is all $n \geqslant n_{0}$, firing $\sum_{n=n_{0}}^{\infty} \leq \sum_{n=n_{0}}^{\infty} a_{n}$
Again, the Comparism Test says $\sum_{n=n_{0}}^{\infty} a_{n}$ must dineuge. Then, the original spins $\sum_{n=1}^{\infty} a_{n}$ also disenges (Toil)
§2 Alternating Series:
Q: What about series that don't have constant sign?
Particular case: sim alternates $+-+-+\cdots$ or $-+-+\cdots \cdots$
Convenient notation: $\sum_{k=1}^{\infty}(-1)^{k+1} a_{k}=a_{1}-a_{2}+a_{3}-a_{4}+\cdots$ with $a_{k} \geqslant 0$.
EXAMPLES (1) $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n}=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\cdots(=\ln 2)$
(2) $\sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k^{2}}=1-\frac{1}{4}+\frac{1}{9}-\frac{1}{16}+\cdots \cdot \cdot$

Note The alternation of sign gives cancellations which in general help for convergence.
GOAL: Decide consergence/divergence of these series. HARDER: Compute their sem. EXAMPLE $\quad \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n}=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\cdots=\ln 2$
Main strategy: Use $a_{n}=\frac{1}{n} \underset{n \rightarrow \infty}{\longrightarrow}$ \& decreasing!

Look at partial sums with even and odd indices.

$$
\begin{aligned}
& S_{1}=1>0 \\
& S_{2}=1-\frac{1}{2}=\frac{1}{2}<S_{1} \\
& S_{3}=S_{2}+\frac{1}{3}>S_{2} \quad \& \quad S_{3}=S_{1}+\frac{1}{3}-\frac{1}{2}<S_{1} \\
& S_{1}+1-1
\end{aligned}
$$

$$
\begin{aligned}
& S_{4}=S_{3}-\frac{1}{4}<S_{3} \& S_{4}=S_{2}+\underbrace{\frac{1}{3}-\frac{1}{4}}_{>0}>S_{2} \\
& \text { Continuing in this wan we pet }
\end{aligned}
$$

Continuing in this way we pet

$$
\begin{aligned}
& S_{2(n+1)}=S_{2 n}+\frac{(-1)^{2 n+1+1}}{2 n+1}+\frac{(-1)^{2 n+2+1}}{2 n+2}=S_{2 n}+\underbrace{\frac{1}{2 n+1}-\frac{1}{2 n+2}}_{>0}>S_{2 n} \\
& S_{2(n+1)}=S_{2 n+1}-\frac{1}{2 n+2}<S_{2 n+1}
\end{aligned}
$$

So $\quad S_{2 n+1}>S_{2(n+1)}>S_{2 n}$ fr all $n \geqslant 1$
Similarly

$$
\begin{aligned}
& S_{2(n+1)+1}=S_{2 n+1}+\frac{(-1)^{2 n+2+1}}{2 n+2}+\frac{(-1)^{2 n+3+1}}{2 n+3}=S_{2 n+1} \underbrace{\frac{-1}{2 n+2}+\frac{1}{2 n+3}<S_{2 n+1}}_{<0} \\
& S_{2(n+1)+1}=S_{2 n+2}+\frac{1}{2 n+3}>S_{2 n+2}=S_{2(n+1)}
\end{aligned}
$$

So $\quad S_{2 n+1}>S_{2(n+1)+1}>S_{2(n+1)}$ po all $n \geqslant 1$
We set:
(1) $S_{1}>S_{3}>S_{5}>S_{7}>\ldots>S_{2 m+1}$
(ass indices)
(2) $S_{2}<S_{4}<S_{6}<S_{8}<\cdots<S_{2 m}$
(Even indices)
(3) In addition: $\quad S_{2 m}<S_{2 m+1} \leqslant S_{1} \leadsto m S_{2 m} \varepsilon_{m \text { is imcuasing \& }}$
trended above
$\left.S_{2 m+1}>S_{2 m} \geqslant S_{2} \leadsto 3 S_{2 m+1}\right\}_{m}$ is deceasing \& \&

- $\left\{S_{2 m}\right\}_{n}+\left\{S_{2 m+1}\right\}_{m}$ both warenge \& $\left|S_{2 n n+1}-S_{2 n}\right|=\left.\left|\frac{1}{2 n+1}\right| \xrightarrow[n \rightarrow \infty]{ }\right|_{n \rightarrow \infty}$ so so they have the same limit! This limit is $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n}$. (next we show it's luz).
\$3 Application: Euler's Constant
Pick $a_{n}=\frac{1}{n} \quad f(x)=\frac{1}{x} \quad \leadsto \int_{1}^{n} \frac{d x}{x}=\ln n$
Write $L=\lim _{n \rightarrow \infty}\left(1+\frac{1}{2}+\cdots+\frac{1}{n}-\ln n\right)$ with $0 \leq L \leq a_{1}=1$.
Equivalently $\lim _{n \rightarrow \infty}\left(1+\frac{1}{2}+\cdots+\frac{1}{n}-(\ln n+L)\right)=0$
(x)

Name: $L=\gamma=$ Euler's Constant $\simeq 0.57721566990153286060 \ldots$.
Algorithmic notation: $b_{n}=0(1)$ if $\frac{b_{n}}{1} \rightarrow 0$
We can wite the limit ((x) as $1+\frac{1}{2}+\cdots+\frac{1}{n}=\ln n+\gamma+o(1)$
Consequence: $1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\cdots=\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n}=\ln 2$
Why? Using the ese a rid partial seems we know $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n}$ converges. (page 1)

- Now, look closer at the partial sums $S_{z_{n}}$ with even indices

$$
\begin{aligned}
S_{2 n} & =1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\cdots+\frac{1}{2 n-1}-\frac{1}{2 n} \\
& =\left(1+\frac{1}{3}+\frac{1}{5}+\cdots+\frac{1}{2 n-1}\right)^{-}-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+\cdots+\frac{1}{2 n}\right)
\end{aligned}
$$

ugporp ODD denominators EvEn terminators

$$
\begin{aligned}
&=\left(1+\frac{1}{2}+\cdots+\frac{1}{2 n}\right)-2\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+\cdots+\frac{1}{2 n}\right) \\
& \text { Add \& } \\
& \text { substract }=\left(1+\frac{1}{2}+\cdots+\frac{1}{2 n}\right)-\left(1+\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{n}\right) \\
& \text { an demon n }=\ln 2 n+\gamma+0(1)-(\ln n+\gamma+0(1)) \\
&=\ln 2 n-\ln n+0(1)=\ln \frac{2 n}{n}+0(1)=\ln 2+0(1)
\end{aligned}
$$

Conclusion $\lim _{n \rightarrow \infty} S_{2 n}=\ln 2$ since $S_{2 n+1}-S_{2 n}=\frac{1}{2 n+1} \rightarrow 0$, both han the limit!
Since $\lim _{n \rightarrow \infty} S_{2 n+1}=\lim _{n \rightarrow \infty} S_{2 n}=\ln 2$, we pet $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n}=\ln 2$.

1) We have to be careful when usuming a series with alternating sums (unless $\sum_{n=1}^{\infty}\left|(-1)^{n+1} a_{n}\right|$ converges). Prem this next Time!
