Lecture LIII: $\$ 13.8$ The alternating series test. Absolute convergence
Up To now: We studied mostly ansengence criteria for series of positive Terms Tests at hand: . comparism

- Integral Test
- limit comparison
- Root / Ratio Test

Q: What about series that don't have constant sign?
Next: A criterion for alternating series (eg $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n}=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\cdots$)
\$1 Alternating series:
Altunating Series Test: Pick an alternating series $\sum_{n=1}^{\infty}(-1)^{n+1} a_{n}$ with

1) $a_{n} \geqslant 0$ fr all n
2) $\lim _{n \rightarrow \infty} a_{n}=0$
3) $\left\{a_{n}\right\}_{n}$ is a decreasing sequence. $\left(a_{1} \geqslant a_{2} \geqslant a_{3} \geqslant \ldots\right)$

Thun $\sum_{n=1}^{\infty}(-1)^{n+1} a_{n}=a_{1}-a_{2}+a_{3}-a_{4}+a_{5} \ldots$ curserges
Why? Main strategy: Look at partial sums with even and odd indices.

$$
\begin{array}{ll}
s_{1}=>0 & s_{3}=s_{1}+\underbrace{a_{3}-a_{2}}_{2}<s_{1} \\
s_{2}=s_{1}-a_{2}<s_{1} & s_{4}=s_{3}-a_{4}<s_{3} \\
s_{3}=s_{2}+a_{3}>s_{2} & S_{4}=S_{2}+\underbrace{a_{3}-a_{4}}_{<0}>S_{2}
\end{array}
$$

Continuing in this way we pt

$$
\begin{aligned}
& S_{2(n+1)}=S_{2 n}+(-1)^{2 n+2}+(-1)_{2 n+1}^{2 n+2+1} a_{2 n+2}=S_{2 n}+\underbrace{a_{2 n+2}-a_{2 n}}_{2 n+1}>S_{2 n} \\
& S_{2(n+1)}=S_{2 n+1}+(-1)^{2 n+3} a_{2 n+2}=S_{2 n+1}-a_{2 n+2}<S_{2 n+1}
\end{aligned}
$$

So $\quad S_{2 n+1}>S_{2(n+1)}>S_{2 n}$ fr all $n \geqslant 1$

Similady

$$
\begin{aligned}
& S_{2(n+1)+1}=S_{2 n+1}+(-1)^{2 n+2+1} a_{2 n+2}+(-1)^{2 n+3+1} a_{2 n+3}=S_{2 n+1}-\underbrace{}_{2 n+2}+a_{2 n+3}<S_{2 n+1}^{(S 32)} \\
& S_{2(n+1)+1}=S_{2 n+2}+(-1) a_{2 n+3}>S_{2 n+2}=S_{2(n+1)}
\end{aligned}
$$

So $\quad S_{2 n+1}>S_{2(n+1)+1}>S_{2(n+1)}$ p all $n \geqslant 1$
We set:
(1) $S_{1}>S_{3}>S_{5}>S_{7}>\ldots>S_{2 m+1}$
(oss indices)
(2) $S_{2}<S_{4}<S_{6}<S_{8}<\cdots<S_{2 m}$
(Even imdices)
(3) In addition: $S_{2 m}<S_{2 m+1} \leqslant S_{1} \leadsto 3 S_{2 m} \varepsilon_{m}$ is incuasing \& brended abore by S_{1}
$\left.S_{2 m+1}>S_{2(m+1)+1} \geqslant S_{2} m, 3 S_{2 m+1}\right\}_{m}$ is decceasing \&

$$
S_{2 m+3}^{\prime \prime}
$$

breended below by S_{2}
Conclusion: Both superences conseige! Write $\lim _{m \rightarrow \infty} S_{2 m}=L_{2}$

$$
S_{2 k+1}=S_{2 k}+(-1)^{2 k+1+1} a_{2 k+1} \quad \lim _{m \rightarrow \infty} S_{2 m+1}=L_{1}
$$

But $\left|S_{2 k}-S_{2 k+1}\right| \stackrel{\downarrow}{=}\left|(-1)^{2 k+2} a_{2 k+1}\right|=a_{2 k+1} \rightarrow 0$ ss $L_{1}=L_{2}$

$$
\left|L_{2} \stackrel{\downarrow k \rightarrow \infty}{ }-L_{1}\right|
$$

Obsuration: Same result works if (1) \& (3) are True fos n large enough.
EXAMPLES (1) $\sum_{k=1}^{\infty}(-1)^{k+1} \frac{k^{2}+1}{5-k^{2}}$ alternatung but direnges because

$$
\frac{k^{2}+1}{5-k^{2}} \longrightarrow-\infty \neq 0
$$

(2) $\sum_{k=1}^{\infty}(-1)^{k+1} \frac{\ln k}{k}$ alturnating

- $a_{n}=\frac{\ln n}{n}$ is psitire \& $a_{n} \xrightarrow[n \rightarrow \infty]{ }$ (L'Hôpital)
- $f(x)=\frac{\ln x}{x}$ is deccuasing $f^{\prime}(x)=\frac{\frac{1}{x} \cdot x-\ln x}{x^{2}}=\frac{1-\ln x}{x^{2}}<0$ So $\left(a_{n}\right)$ is decuasing.

The series canserges by the Alternating Series Test.
Q: What if the Terms change sings without alternating?
§2 Absolute Convergence:
If: $\sum_{k=1}^{\infty} a_{k}$ is absolutely convergent if $\sum_{k=1}^{\infty}\left|a_{k}\right|$ consenges.
Proposition: An absolutely convergent series always converges.
Why? Look at the series for $b_{n}=a_{n}+\left|a_{n}\right| \geqslant 0$.

- $0 \leqslant b_{n} \leqslant 2\left|a_{n}\right| \& \sum_{n=1}^{\infty} 2\left|a_{n}\right|$ converges, so $\sum_{n=1}^{\infty} b_{n}$ converges by umparism Test
- Now: $a_{n}=b_{n}-\left|a_{n}\right|$ \& so by Limit Laws: we get $\sum_{n=1}^{\infty} a_{n}=\sum_{\substack{n=1 \\ \text { corteges }}}^{\infty} b_{n}-\sum_{\substack{n=1 \\ \text { comperpes }}}^{\infty}\left|a_{n}\right|$ also converges.
Advantage: We have a lot of tests fr absolute unsengence!
Warning: The converse is false in general
$\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n}$ converges $\left(t_{0} \ln 2\right)$ but $\sum_{n=1}^{\infty}\left|\frac{(-1)^{n+1}}{n}\right|=\sum_{n=1}^{\infty} \frac{1}{n}$ diverges.
So $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n}$ is NOT absolutely ansergent.
If: Series like these are called conditionally convergent
Curisesfact: If $\sum_{n=1}^{\infty} a_{n}$ is conditionally ansengent, then by ranauging we can make the new series consenge To ANY prescribed value r even disenge (see Thuremz in Appendix AI3).
Next, we show an example (optimal wading)

EXAMPLE: $\ln 2=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+\cdots=\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} \quad\left(a_{n}=\frac{(-1)^{n+1}}{n}\right)$

- Multiply by $\frac{1}{2}$:

$$
\frac{1}{2} \ln 2=\frac{1}{2}-\frac{1}{4}+\frac{1}{6}-\frac{1}{8}+\frac{1}{10}-\frac{1}{12}
$$

- Add the 2 series Eerm-by-Term as follows:

$$
\begin{aligned}
& \ln 2=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+\frac{1}{7}-\frac{1}{8}+\frac{1}{9}-\frac{1}{10}+\cdots \\
& \frac{\ln 2}{2}=\frac{1}{2}+-\frac{1}{4}+\frac{1}{6}+\frac{1}{10}+\cdots
\end{aligned}
$$

$$
\frac{3 \ln 2}{2}=1+0+\frac{1}{3}-\frac{1}{2}+\frac{1}{5}+0+\frac{1}{7}-\frac{1}{4}+\frac{1}{9}+\ldots=\sum_{n=1}^{\infty} b_{n}
$$

We see that this is a manangement of the riginal series, bat (${ }^{*}$)
the sem is different! $\left(\ln 2 \neq \frac{3 \ln 2}{2}\right)$
(k) $\cdot b_{2 k+1}=\frac{(-1)^{2 k+2}}{2 k+1}=\frac{1}{2 k+1}$

- ${ }_{2 k}=\frac{(-1)^{2 k+1}}{2 k}+(-1)^{k+1} \frac{1}{2 k}=\frac{-1+(-1)^{k+1}}{2 k}=\left\{\begin{array}{cl}0 & \text { if } k \text { even } \\ \frac{-1}{k} & \text { if } k \text { is os s }\end{array}\right.$

So the sequence b_{n}, has the save terns as a_{n}, but reordered.

- The odd terms $a_{2 k+1}$ appear as $b_{2 k+1}$
- The even Terms appear I disaffiar depending m $4 / n \pi$ not.
$a_{4 m+2}=\frac{(-1)}{4 m+2}$ disappears from $\frac{(-1)^{4 m+1}}{4 m+2}+\frac{(-1)^{(2 m+1)+1}}{4 m+2}=0$ but
appears from $\frac{(-1)^{2(4 m+2)+1}}{2(4 m+2)}+\frac{(-1)^{2(4 m+2)+1}}{2(4 m+2)}=\frac{-2}{2(4 m+2)}=\frac{-1}{4 m+2}=\frac{(-1)^{4 m+2+1}}{4 m+2}$ $a_{4 m}=\frac{(-1)}{4 m}$ appears from $\frac{(-1)^{\frac{8}{4 m+1}}}{8 m}+\frac{(-1)^{8 m+1}}{8 m}=\frac{-1}{4 m}=\frac{(-1)^{4 m+1}}{4 m}$
s 3 Mre examples:
(1) $\sum_{n=1}^{\infty}(-1)^{n+1} \frac{\sqrt[3]{n}}{\sqrt{n}}=\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n^{1 / 6}}$ is conditionally consergent
- $\sum_{n=1}^{\infty} \frac{1}{n^{1 / 6}}$ disenges (p-series with $p=\frac{1}{6}<1$)
- $a_{n}=\frac{1}{n^{1 / 6}}$ is pritive, $\lim _{n \rightarrow \infty} a_{n} \rightarrow 0$ \& a_{n} is deccuasing
$\left(f(x)=\frac{1}{x^{1 / 6}}\right.$ so $f^{\prime}(x)=\frac{-1}{6} \frac{1}{x^{7 / 6}}<0$ for $\left.x>0\right)$
So the sesies consenges by the Alternating Series Test
(2) $\sum_{n=1}^{\infty}(-1)^{n+1} \frac{\sin ^{2} x}{n^{9 / 2}}$ is absolutely ansengent:
- $\left|\frac{\operatorname{sen}^{2} n}{n^{9 / 2}}\right| \leqslant \frac{1}{n^{9 / 2}} \& \sum_{n=1}^{\infty} \frac{1}{n^{9 / 2}}$ consegges (p-seies with $p=\frac{9}{2}>1$)

So $\sum_{n=1}^{\infty}\left|\frac{\operatorname{sen}^{2} n}{n^{9 / 2}}\right|$ cansuges by Comparison Test
(3) $\sum_{n=1}^{\infty}(-1)^{n+1} \ln (\sqrt[n]{n})=\sum_{n=1}^{\infty}(-1)^{n+1} \frac{\ln n}{n}$

- This series conseuges by the Alternating series Test
(1) $a_{n}=\frac{\ln n}{n}>0 \quad$ f $>n \geqslant 2$;
(2) $a_{n} \xrightarrow[n \rightarrow \infty]{ } 0$
(by l'Hô,ital)
(3) $f(x)=\frac{\ln x}{x}$ satisties $f^{\prime}(x)=\frac{\frac{1}{x} \cdot x-\ln x}{x^{2}}=\frac{1-\ln x}{x^{2}}<0$ fr $x>1$

So $a_{n}=f(n)$ is a deccuasing seguence.
Q: Is it absolutely consugent?
Ratio Test? $\frac{a_{n+1}}{a_{n}}=\frac{\ln (n+1)}{n+1} / \frac{\ln n}{n}=\frac{\ln (n+1)}{\ln (n)} \frac{n}{n+1} \longrightarrow 1$ inconclucia!

$$
\begin{gathered}
\left(\lim _{x \rightarrow \infty} \frac{f(x+1)}{f(x)}=\lim _{x \rightarrow \infty} \frac{f^{\prime}(x+1)}{f^{\prime}(x)}=\lim _{x \rightarrow \infty} \frac{\left(\frac{x}{x+1}\right)^{2} \frac{1-\ln (x+1)}{1-\ln x}}{\frac{\downarrow x \rightarrow \infty}{\infty}}=\right. \\
\text { L'kap }
\end{gathered}
$$

$$
\begin{gathered}
\lim _{x \rightarrow \infty} \frac{1-\ln (x+1)}{1-\ln x}=\underset{\substack{\downarrow \\
\text { L'hôp }}}{\left.=\lim _{x \rightarrow \infty} \frac{-\frac{1}{x+1}}{-1 / x}=\lim _{x \rightarrow \infty} \frac{x}{x+1}=1\right)} \\
\frac{\infty}{\infty}
\end{gathered}
$$

ANSWER It is NOT absolutily ansergent.

$$
\left|(-1)^{n+1} \frac{\ln n}{n}\right|=\frac{\ln n}{n}>\frac{1}{n} \text { fo } n \geqslant 3 \quad \& \sum_{n=1}^{\infty} \frac{1}{n} \text { direengs. }
$$

So $\sum_{n=1}^{\infty} \frac{\ln n}{n}$ also disenges by Comparison Test.

