Lecture LIV: Appendix AI3: Absolute vs. Conditional Consengence
Recall: A series $\sum_{n=1}^{\infty} a_{n}$ is absolutely convergent if $\sum_{n=1}^{\infty}\left|a_{n}\right|$ converges.
Prop: An absolutely convergent shies converges.

- The series is anditinally convergent if $\sum_{n=1}^{\infty} a_{n}$ converges but $\sum^{\prime}\left|a_{n}\right|$ diverges.

EXAMPLES : (1) $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n^{2}}$ is absolutely convergent
(2) $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n}$ is conditionally convergent (its sum is lu 2)

Proposition: Rearranging a series with positive terms does not change its sum.
Lecture 53: Reanauping $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n}$ can change the sem.
THEOREM I: An absolutely convergent series with seem S will have the same sum for any rearrangement.
Why? To show this, we introduce 2 positive sequences associated to $\sum_{n=1}^{\infty} a_{n}$:

$$
P_{n}:=\frac{\left|a_{n}\right|+a_{n}}{2}=\left\{\begin{array}{cl}
a_{n} & \text { if } a_{n} \geqslant 0 \\
0 & \text { else }
\end{array} ; \quad q_{n}=\frac{\left|a_{n}\right|-a_{n}}{2}=\left\{\begin{array}{cc}
0 & \text { if } a_{n} \geqslant 0 \\
-a_{n} & \text { else }
\end{array}\right.\right.
$$

Example:

$$
\begin{aligned}
& a_{n}=-1,2,3,0,4,-10,-5, \ldots \\
& p_{n}=0,2,3,0,4,0,0, \ldots \\
& q_{n}=1,0,0,0,0,10,5, \ldots
\end{aligned}
$$

The $T_{y k}$ of ansergence of a_{n} decides the anoregence / divergence of $\sum_{n=1}^{\infty} p_{n}$ \& $\sum_{n=1}^{\infty} q_{n}$
Lemma: (1) If $\sum_{n=1}^{\infty} a_{n}$ converges absolutely, then both $\sum_{n=1}^{\infty} p_{n}+\sum_{n=1}^{\infty} q_{n}$ converge \& furthermore $\sum_{n=1}^{\infty} a_{n}=\sum_{n=1}^{\infty} p_{n}-\sum_{n=1}^{\infty} q_{n}$.
(2) If $\sum_{n=1}^{\infty} a_{n}$ converges conditionally, then $\sum_{n=1}^{\infty} p_{n} \& \sum_{n=1}^{\infty} q_{n}$ diverge.

Proof: By construction, $a_{n}=p_{n}-q_{n} \&\left|a_{n}\right|=p_{n}+q_{n}$
(1) We know: convergent series can be added / substeacted term-by-term. Since $\sum_{n=1}^{\infty} a_{n}$ \& $\sum_{n=1}^{\infty}\left|a_{n}\right|$ converge then:
$\sum_{n=1}^{\infty} p_{n}=\sum_{n=1}^{\infty} \frac{\left|a_{n}\right|+a_{n}}{2}=\frac{1}{2}\left(\sum_{n=1}^{\infty}\left|a_{n}\right|+\sum_{n=1}^{\infty} a_{n}\right)$ converges.
$\sum_{n=1}^{\infty} q_{n}=\sum_{n=1}^{\infty} \frac{\left|a_{n}\right|-a_{n}}{2}=\frac{1}{2}\left(\sum_{n=1}^{\infty}\left|a_{n}\right|-\sum_{n=1}^{\infty} a_{n}\right)$
converges.
Also $\sum_{n=1}^{\infty} a_{n}=\sum_{n=1}^{\infty} p_{n}-q_{n}=\sum_{n=1}^{\infty} p_{n}-\sum_{n=1}^{\infty} q_{n}$
(this is a difference of 2 ansengent series)
(2) Since $\sum_{n=1}^{\infty} a_{n}$ converges but $\sum_{n=1}^{\infty}\left|a_{n}\right|$ direcpes, then:

- $\sum_{n=1}^{\infty} p_{n}=\sum_{n=1}^{\infty} \frac{\left|a_{n}\right|+a_{n}}{2}=\frac{1}{2} \underbrace{\sum_{n=1}^{\infty}\left|a_{n}\right|}_{=\infty}+\frac{1}{2} \underbrace{\sum_{n=1}^{\infty} a_{n}}_{\text {corteges }}$ diverges
- $\sum_{n=1}^{\infty} q_{n}=\sum_{n=1}^{\infty} \frac{\left|a_{n}\right|-a_{n}}{2}=\frac{1}{2} \underbrace{\sum_{n=1}^{\infty}\left|a_{n}\right|}_{=\infty}-\frac{1}{2} \underbrace{\sum_{n=1}^{\infty} a_{n}}_{\text {conregges }}$ diverges

Prod of Theorem 1:
Assume $\sum_{n=1}^{\infty}\left|a_{n}\right|$ converges T S. We know any rearrangement of it also has sum S.

Call $\sum_{n=1}^{\infty} b_{n}$ the rearrangement of $\sum_{n=1}^{\infty} a_{n}$. Then, $\sum_{n=1}^{\infty}\left|b_{n}\right|$ is convergent because it's a rearrangement of $\sum_{n=1}^{\infty}\left|a_{n}\right|$. In particular, its sum is S.
Now, use $p_{n}=\frac{\left|a_{n}\right|+a_{n}}{2} \quad \& \quad s_{n}=\frac{\left|b_{n}\right|+b_{n}}{2}$

$$
q_{n}=\frac{\left|a_{n}\right|-a_{n}}{2}
$$

$$
r_{n}=\frac{\left|b_{n}\right|^{2}-b_{n}}{2}
$$

By construction, $\left\{s_{n}\right\}$ is a rearrangement of $\left\{p_{n}\right\}$ so $\sum_{n=0}^{\infty} s_{n}=\sum_{n=0}^{\infty} p_{n}$ $\left\{r_{n}\right\} \quad\left\{q_{n}\right\}$ so $\sum_{n=1}^{\infty} r_{n}=\sum^{\infty} q_{n}$

In particular, by Lemma (1) applied to $3 a_{n}\left\{23 b_{n}\right\}$ in (x), we have

$$
\sum_{n=1}^{\infty} b_{n}=\sum_{(*)}^{\infty}\left(s_{n=1}-c_{n}\right)=\sum_{n=1}^{\infty} s_{n}-\sum_{n=1}^{\infty} r_{n}=\sum_{n=1}^{\infty} p_{n}-\sum_{n=1}^{\infty} q_{n}=\sum_{(x)=1}^{\infty} a_{n}
$$

So the sum is peeseused.
Q: What about conditionally convergent series?
THEOREM 2: Assume $\sum_{n=1}^{\infty} a_{n}$ is conditionally convergent. Then, its terms can be reavanged to give a convergent series with any puscribed sum s in \mathbb{R}, and also a divergent spies with sum $\infty \quad r-\infty$.

Proof of Thurrem2:(dee To Riemann)
(1) First, we fix the desired value s we want to get. We know by the Lenmara that $\sum_{n=1}^{\infty} p_{n}+\sum_{n=1}^{\infty} q_{n} \quad b_{r}$ th diverge $($ sum $=\infty)$

- We start by writing down p^{\prime} s until the partial sem $p_{1}+\cdots+p_{n_{1}}$ is s reeceeds s for the first time.

$$
p_{1}+p_{2}+\cdots+p_{n_{1}} \geqslant s \quad\left(\text { but } p_{1}+\cdots+p_{n_{1}-1}<s\right)
$$

- Then, we substeact f 's until the usult is s er less for the first true

$$
\left.p_{1}+\cdots+p_{n_{1}}-q_{1}-q_{2}-\cdots-q_{m_{1}} \leqslant s \quad \text { (but } p_{1}+\cdots p_{n_{1}}-q_{1}-\cdots-q_{m_{1}-1}>s\right)
$$

- Then add $p^{\prime} \leqslant$ (stating hum $p n_{1}+1$) until we gets sombre fo the first Time

$$
1, r \cdots+p_{n_{1}}-q_{1}-\cdots-q_{m_{1}}+p_{n_{1}+1}+\cdots+p_{n_{2}} \geqslant s
$$

(but $p_{1}+\cdots+p_{n_{1}}-q_{1}-\cdots-q_{m_{1}}+p_{n_{1}+1}+\cdots+p_{n_{2}-1}<s$)

- Next, we substract f's, starting fum $m_{1}+1$ unless we get s or less,
and so x.
Note that each step can be achiesed because $\sum_{n \geqslant k} P_{n}=\infty$ \& $\sum_{n \geqslant k}\left(-q_{n}\right)=\infty \quad f r$ any fixed $k \geqslant 0$.

EXAMPLE: $\quad S=3$

$$
\begin{aligned}
& n=1,2,3,4,5,6,7,8,9 \\
& a_{n}= \\
& p_{n}=0,2,3,0,4,-10,5,-1, \ldots \\
& q_{n}=1,0,3,0,4,0,5,0, \ldots
\end{aligned}
$$

$$
\begin{array}{ll}
- & p_{1}+p_{2}=2<3 \quad \& \quad p_{1}+p_{2}+p_{3}=5>3 \quad n_{1}=3 \\
- & p_{1}+p_{2}+p_{3}-q_{1}-q_{2}-q_{3}-q_{4}-q_{5}=4>3 \quad \& \\
& p_{1}+p_{2}+p_{3}-q_{1}-q_{2}-q_{3}-q_{4}-q_{5}-q_{6}=-6<3 \quad m_{1}=6 \\
- & p_{1}+p_{2}+p_{3}-q_{1}-q_{2}-q_{3}-q_{4}-q_{5}-q_{6}+p_{4}+p_{5}+p_{6}+p_{7}=-2<3 \\
& p_{1}+p_{2}+p_{3}-q_{1}-q_{2}-q_{3}-q_{4}-q_{5}-q_{6}+p_{4}+p_{5}+p_{6}+p_{7}+p_{8}=3 \geqslant 3 \quad n_{2}=8 \\
- & p_{1}+p_{2}+p_{3}-q_{1}-q_{2}-q_{3}-q_{4}-q_{5}-q_{6}+p_{4}+p_{5}+p_{6}+p_{7}+p_{8}-q_{7}=3 \geqslant 3 \\
& p_{1}+p_{2}+p_{3}-q_{1}-q_{2}-q_{3}-q_{4}-q_{5}-q_{6}+p_{4}+p_{5}+p_{6}+p_{7}+p_{8}-q_{7}-q_{8}=2<3 \\
\end{array}
$$

This partial sum starts a ravangement fo $3 a_{4}$ r's (after iguring o's)

$$
\begin{aligned}
& p_{1}+p_{2}+p_{3}-q_{1}-q_{2}-q_{3}-q_{4}-q_{5}-q_{6}+p_{4}+p_{5}+p_{6}+p_{7}+p_{8}-q_{7}-q_{8} \\
& 0
\end{aligned} a_{2} a_{3} a_{1}
$$

In general, we have:
Claim 1: The sums $p_{1}+\cdots+p_{n_{1}}-q_{1}-\cdots-q_{m_{1}}+p_{n_{1}+1}+\cdots+p_{n_{2}}-q_{m_{1}-1}-\cdots$. give a management of a_{n} 's with 0 's that can be ignored.
Reason: $\quad p_{n}=\left\{\begin{array}{ll}a_{n} & \text { if } a_{n} \geqslant 0 \\ 0 & \text { elbe }\end{array} \quad \&-q_{n}= \begin{cases}0 & \text { if } a_{n} \geqslant 0 \\ a_{n} & \text { if } a_{n}<0\end{cases}\right.$ By construction each a_{n} appears as $p_{n} r q_{n} \&$ only ne!

Claim 2 The rearrangement has sums because $a_{n} \rightarrow 0, p_{n \rightarrow \infty} \rightarrow 0$ \& In $\rightarrow 0 \quad \&$ by construction $n_{1}, m_{1}, n_{2}, m_{2}, \ldots$ are chosen so that the partial sums get closer to S as we mise along.
Indeed: given $\varepsilon>0$ we can find $m_{0} \& n_{0}>0$ so that
\& $p_{n}=\left|p_{n}\right|<\varepsilon \quad f \cap n \geqslant n_{0}$

$$
q_{m}=\left|q_{m}\right|<\varepsilon \quad \text { is } m \geqslant m_{0}
$$

Take $T_{r}:=\sum_{i=1}^{n_{1}} p_{i}-\sum_{i=1}^{m_{1}} q_{i}+\sum_{i=n_{1}+1}^{n_{2}} p_{i}-\sum_{i=m_{1}+1}^{m_{2}}+\cdots+\sum_{i=n_{r+1}+1}^{n_{r}} p_{i}$

$$
U_{r}:=\sum_{i=1}^{n_{1}} p_{i}-\sum_{i=1}^{m_{1}} s_{i}+\sum_{i=n_{1}+1}^{n_{2}} p_{i}-\sum_{i=w_{1}+1}^{m_{2}}+\cdots+\sum_{i=n_{r-1}^{+1}}^{n_{r}} p_{i}-\sum_{i=m_{r-1}^{+1}}^{m_{r}} q_{i}
$$

Them $U_{r} \leqslant s \quad T_{r} \geqslant s$ for all
Pick r so that $n_{r} \geqslant n_{0} \& m_{s} \geqslant m_{0} \quad=U_{r}+q_{r}$
Then $\left|U_{r}-s\right|=s-U_{r}=\underbrace{s-\left(T_{r}-q_{m_{r}+1}-\cdots q_{m_{r}-1}\right)}_{s q=\left|q_{m_{r}}\right|}-q_{m_{r}}>0$ prong $\left|U_{r}-s\right| \leqslant\left|q_{m}\right|$

Next we compute: $\left|U_{r}+p_{n_{r}+1}+\cdots+p_{t}-s\right|$ fo $n_{r}+1 \leqslant t \leqslant n_{r}$
. If $t<n_{r}$:

$$
U_{r} \leqslant U_{r}+p_{n_{r+1}}+\cdots+p_{t}<S
$$

so $\left|\left(U_{r}+p_{n_{r}+1}+\cdots+p_{t}\right)-s\right|<s-U_{r}<\left|q_{n_{r}}\right|$
. If $t=n_{r}$, then $U_{r}+p_{n_{r}+1}+\cdots+p_{n_{r}}=T_{r}>S \&$

$$
T_{r}-p_{n_{r} r}=U_{r}+p_{n_{s}+1} r+p_{n_{r}-1}<s
$$

So $\left|T_{r}-s\right| \leqslant\left|p_{n_{r}}\right|$

- Similarly $\left|T_{r}-q_{m_{r}+1}-\cdots-q_{t}-s\right| \leqslant s-T_{r} \quad$ pr all $m_{r}+1 \leqslant t<m_{r+1}$
\& $U_{r+1}=T_{r}-q_{m_{r+1}}-\cdots-q_{m_{r+1}}$ satisfies $\left|U_{r+1}-s\right| \leqslant\left|q_{m_{r+1}}\right|^{154(6)}$ Since $\left|q_{m_{r}}\right|,\left|q_{u_{r+1}}\right|,\left|p_{n_{r}}\right|<\varepsilon$ we conclude that
$\left|T_{r}-s\right|, \quad\left|U_{r}-s\right|$ \& all partial sums of $p_{s} \&-q_{s}$ in betorea Tr aU differ fum s in less than ε.
(2) To make $\sum b_{n}=+\infty$ we take n_{1} so that $p_{1}+\cdots+p_{n_{1}} \geqslant 1$ is the fist Time. Then take $p_{1}+\cdots+p_{n_{1}}-q_{1} \&$ add enough $p s$ so that $p_{1}+\cdots+p_{n_{1}}-q_{1}+p_{n_{1}+1}+\cdots+p_{n_{2}} \geqslant 2 \quad p$ the first time.
Then substract $\rho_{2} \&$ add $i s t_{0}$ be $\geqslant 3$, etc.
By construction, this series manages $\sum a_{n}$ (same rasmas Claim)) \& since $P_{n}, f_{n} \xrightarrow[n \rightarrow \infty]{ }$ we get that the partial sues go $T_{0}+\infty$.
(3) To make $\sum b_{n}=-\infty$, reverse the roles of $p<q$ in (2). That is pick m_{1} so that $-q_{1}-q_{2} \ldots q_{m_{1}} \leq-1$ b the thirst Time, there add P_{1} \& substract enough f 's to that we get

$$
-q_{1}-f_{2}-\cdots-q_{m_{1}}+p_{1}-q_{m_{1}+1}-\cdots-q_{m_{2}} \leqslant-2 \text {, ec. }
$$

