$$\frac{|ecture LIV: Appendix AI3: Absolutions Consequence
Recall : A series $\sum_{n=1}^{\infty} a_n$ is desolution consequent if $\sum_{n=1}^{\infty} |a_{n,1}|$ converges.
Reg: An absolution convergent since convergen.
The serie is anditionally convergent if $\sum_{n=1}^{\infty} a_n$ converges but $\sum_{n=1}^{\infty} |a_{n,1}|$ diverges

$$\frac{EXAMPLES: 0}{n} \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n!}$$
 is absoluting convergent (its sum is less)
Reporting: Reasoninging a series with portion terms does not change its sum.
Lettre 53: Reasoninging $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n!}$ can change the sum.
THEOREH I: An absoluting convergent series with sum S will have the
same sum for any maximagement.
Why? To show this, we introduce a positive sequences consciented to $\sum_{n=1}^{\infty} a_{n}$:
 $P_n := \frac{|a_n| + a_n}{2} = \begin{cases} a_n & \text{if } a_n \ge 0 & \text{if } a_{n \ge 0} \\ 0 & \text{if } a_{n \ge 0} & 0 & 0 & 0 \\ 0 & \text{if } a_{n \ge 0} & 0 & 0 & 0 \\ 0 & \text{if } a_{n \ge 0} & 0 & 0 & 0 \\ 0 & \text{if } a_{n \ge 0} & 0 & 0 & 0 \\ 0 & \text{if } a_{n \ge 0} & 0 & 0 & 0 \\ 0 & \text{if } a_{n \ge 0} & 0 & 0 & 0 \\ P_n := \frac{|a_n| - a_n}{2} = \begin{bmatrix} 0 & \text{if } a_{n \ge 0} \\ -a_n & \text{if } a_{n \ge 0} & 0 & 0 & 0 \\ -a_n & \text{if } a_{n \ge 0} & 0 & 0 & 0 \\ P_n := \frac{|a_n| - a_n}{2} & 0 & 0 & 0 \\ P_n := \frac{|a_n| - a_n}{2} & 0 & 0 \\ -a_n & \text{if } a_{n \ge 0} & 0 & 0 & 0 \\ P_n := \frac{|a_n| - a_n}{2} & 0 & 0 & 0 \\ P_n := \frac{|a_n| - a_n}{2} & 0 & 0 & 0 \\ P_n := \frac{|a_n| - a_n}{2} & 0 & 0 & 0 \\ P_n := \frac{|a_n| - a_n}{2} & 0 & 0 & 0 \\ P_n : = \frac{|a_n| - a_n}{2} & 0 & 0 & 0 \\ P_n : = \frac{|a_n| - a_n}{2} & 0 & 0 & 0 \\ P_n : = \frac{|a_n| - a_n}{2} & 0 & 0 \\ P_n : = \frac{|a_n| - a_n}{2} & 0 & 0 \\ P_n : = \frac{|a_n| - a_n}{2} & 0 & 0 \\ P_n : = \frac{|a_n| - a_n}{2} & 0 & 0 \\ P_n : = \frac{|a_n| - a_n}{2} & 0 & 0 \\ P_n : = \frac{|a_n| - a_n}{2} & 0 & 0 \\ P_n : = \frac{|a_n| - a_n}{2} & 0 & 0 \\ P_n : = \frac{|a_n| - a_n}{2} & 0 & 0 \\ P_n : = \frac{|a_n| - a_n}{2} & 0 & 0 \\ P_n : = \frac{|a_n| - a_n}{2} & 0 & 0 \\ P_n : = \frac{|a_n| - a_n}{2} & 0 & 0 \\ P_n : = \frac{|a_n| - a_n}{2} & 0 & 0 \\ P_n : = \frac{|a_n| - a_n}{2} & 0 & 0 \\ P_n : = \frac{|a_n| - a_n}{2} & 0 & 0 \\ P_n : = \frac{|a_n| - a_n}{2} & 0$$$

Itel: By construction,
$$a_n = p_n - q_n + |a_n| = p_n + q_n$$

(1) We know: convergent varies can be added / substanced terms by term.
Since $\sum_{n=1}^{\infty} a_n = \sum_{n=1}^{\infty} |a_n| + a_n = \frac{1}{2} \left(\sum_{n=1}^{\infty} |a_n| + \sum_{n=1}^{\infty} q_n \right)$ convergen.
 $\sum_{n=1}^{\infty} p_n = \sum_{n=1}^{\infty} \frac{|a_n| + a_n}{2} = \frac{1}{2} \left(\sum_{n=1}^{\infty} |a_n| - \sum_{n=1}^{\infty} q_n \right)$ convergen.
 $\sum_{n=1}^{\infty} q_n = \sum_{n=1}^{\infty} \frac{|a_n| - a_n}{2} = \frac{1}{2} \left(\sum_{n=1}^{\infty} |a_n| - \sum_{n=1}^{\infty} q_n \right)$ convergen.
Also $\sum_{n=1}^{\infty} a_n = \sum_{n=1}^{\infty} p_n - q_n = \sum_{n=1}^{\infty} p_n - \sum_{n=1}^{\infty} q_n$ (this is a difference of a convergent series)
(2) Since $\sum_{n=1}^{\infty} a_n$ converges but $\sum_{n=1}^{\infty} |a_n| + \frac{1}{2} \sum_{n=1}^{\infty} a_n$ diverges
 $\sum_{n=1}^{\infty} p_n = \sum_{n=1}^{\infty} \frac{|a_n| - a_n}{2} = \frac{1}{2} \sum_{n=1}^{\infty} |a_n| + \frac{1}{2} \sum_{n=1}^{\infty} a_n$ diverges
 $\sum_{n=1}^{\infty} q_n = \sum_{n=1}^{\infty} \frac{|a_n| - a_n}{2} = \frac{1}{2} \sum_{n=1}^{\infty} |a_n| - \frac{1}{2} \sum_{n=1}^{\infty} a_n$ diverges
 $\sum_{n=1}^{\infty} q_n = \sum_{n=1}^{\infty} \frac{|a_n| - a_n}{2} = \frac{1}{2} \sum_{n=1}^{\infty} |a_n| - \frac{1}{2} \sum_{n=1}^{\infty} a_n$ diverges
 $\sum_{n=1}^{\infty} q_n$ diverges
 $\sum_{n=1}^{\infty} q_n = \sum_{n=1}^{\infty} \frac{|a_n| - a_n}{2} = \frac{1}{2} \sum_{n=1}^{\infty} |a_n| - \frac{1}{2} \sum_{n=1}^{\infty} a_n$ diverges
 $\sum_{n=1}^{\infty} q_n$ diverges
 $\sum_{n=1}^{\infty} q$

2543) In particular, by Lemma (1) applied to 39n { 23 5n { in (x), we have $\sum_{n=1}^{\infty} b_n = \sum_{n=1}^{\infty} (s_n - c_n) = \sum_{n=1}^{\infty} s_n - \sum_{n=1}^{\infty} c_n = \sum_{n=1}^{\infty} p_n - \sum_{n=1}^{\infty} q_n = \sum_{n=1}^{\infty} q_n$ So the sum is preserved.

$$Q$$
: What about anditionally anvergent series?
THEOREH Z: Assume $\sum_{n=1}^{\infty} a_n$ is anditionally anreagent. Then, its terms
can be mananged to give a convergent series with any prescribed sum s in R
and also a divergent series with sum ∞ $r - \infty$.

THEOREH 2: Assume
$$\sum_{n=1}^{\infty} a_n$$
 is unditionally unreagent. Then, its terms
can be managed to give a convergent series with any puscribed sum s in R,
and also a direigent series with sum $\infty \pi - \infty$.
Brod of Thurem2 (due to Riemann)
() First, we fix the desired value s we want to get. We know by the
Lemma that $\sum_{n=1}^{\infty} p_n + \sum_{n=1}^{\infty} q_n$ both diverge (sum = ∞).
We start by writing down p's with the partial sum $p_1 + \cdots + p_n$ is s
Receeds s for the first time.

$$P_1 + P_2 + \cdots + P_{n_1} > S$$
 (but $P_1 + \cdots + P_{n_{j-1}} < S$)

. Then, we substract q's until the result is sor less for the first time

$$P_1 + \dots + P_{n_1} - q_1 - q_2 - \dots - q_{m_1} \leq s$$
 (but $P_1 + \dots + P_{n_1} - q_1 - q_{m_1} > s$)
Then add $p' \leq (starting from $P_{n_1+1})$ until we get strong for the first
Time$

$$l_{1} + \dots + p_{n_{1}} - g_{1} - \dots - g_{m_{1}} + p_{n_{1}+1} + \dots + p_{n_{2}} \ge S$$

(but $l_{1} + \dots + l_{n_{1}} - g_{1} - \dots - g_{m_{1}} + p_{n_{1}+1} + \dots + p_{n_{2}-1} < S$)

Next, we substract q's, starting pun mit unless we get sor less

and so m.

Note that each step can be achieved because $\sum_{n \ge k} p_n = \infty$ d $\sum_{n \ge k} (-q_n) = \infty$ for any pixed $k \ge 0$.

EXAMPLE: S = 3 $n = 1 \quad z \quad s \quad 4 \quad 5 \quad 6 \quad 7 \quad 8 \quad 9$ $q_n = -1, \quad 2, \quad 3, \quad 0, \quad 4, \quad -10 \quad , \quad 5 \quad , \quad -1_1 \quad ...$ $Pn = 0, 2, 3, 0, 4, 0, 5, 0, \cdots$ $q_n = 1 / 0 / 0, 0, 0, 10, 0 / 1/...$ • $P_1 + P_2 = 2 < 3$ & $P_1 + P_2 + P_3 = 5 > 3$ h1=3 · P1+P2+P3-71-92-93-94-95 = 4>3 & m = 6 P1+P2+P3-91-92-93-94-95-96 = -6<3 • $l_1+l_2+l_3-l_1-l_5-l_3-l_6-l_6-l_6+l_4+l_2+l_6+l_1 = -5<3$ $l_1+l_2+l_3-l_1-l_2-l_3-l_4-l_5-l_6+l_4+l_5+l_6+l_7+l_8=3 \ge 3$ • $l_1+l_2+l_3-l_1-l_2-l_3-l_4-l_5-l_6+l_4+l_5+l_6+l_7+l_8-l_7=3>3$ $l_1+l_2+l_3-l_1-l_2-l_3-l_4-l_5-l_6+l_4+l_5+l_6+l_7+l_8-l_7-l_8=2<3$ m`=g This partial sum starts a rearrangement for 29nt's (after ignoring o's) $l_1+l_2+l_3-l_1-l_2-l_3-l_4-l_5-l_6+l_4+l_5+l_6+l_7+l_8-l_7-l_8$ $0 \alpha_2 \alpha_3 \alpha_1 0 0 0 0 \alpha_6 \alpha_4 \alpha_5 0 \alpha_7 0 0 \alpha_8$ In general, we have : <u>Claim 1</u>. The sums $p_1 + \dots + p_{n_1} - q_{n_1} + p_{n_2+1} + \dots + p_{n_2+m_{i-1}} + \dots$ give a manangement of an's with o's that can be ignored. Reason: $P_n = \begin{cases} q_n & \text{if } q_n \ge 0 \\ 0 & \text{olse} \end{cases}$ $4 - q_n = \begin{cases} 0 & \text{if } q_n \ge 0 \\ q_n & \text{if } q_n < 0 \end{cases}$

By construction each que appears as pu or que any me?

$$\begin{array}{c} \underline{\text{Uaim 2}} \quad \text{The mananequant has sum 3 because } q_{1} \underbrace{\text{mod}}_{1 \text{ mod}} \circ p_{1} \underbrace{\text{mod}}_{1 \text{ mod}} e_{1} e_$$

. If $t = n_r$, then $U_r + \rho_{n_r+1} + \cdots + \rho_{n_r} = T_r > S$ & $T_r - \rho_{n_r} = V_r + \rho_{r+1} + \cdots + \rho_{n_r} = T_r > S$ &

- $T_{r} \rho_{n_{r}} = V_{r} + \rho_{n_{r}+1} + \cdots + \rho_{n_{r}-1} < S$ $T_{r} \cdot \rho_{n_{r}} S \cdot T_{r}$ $S_{\sigma} \quad (T_{r} S) \leq |\rho_{n_{r}}|$ $= |\rho_{n_{r}}|$
 - Similarly $|T_r q_t s| \leq s T_r$ frall $m_{r+1} \leq t < m_{r+1}$

&
$$U_{r+1} = T_r - f_{m_r+1} - \cdots - f_{m_{r+1}}$$
 satisfies $|U_{r+1} - S| \leq |q_{m_{r+1}}|^{154}$
Since $|q_{m_r}|$, $|q_{m_{r+1}}|$, $|p_{n_r}| < E$ we conclude that
 $|T_r - S|$, $|U_r - S| \leq a$ all partial sums of $p_s \leq -q_s$ in below,
 $T_r \geq U_r$ differ from S in less than E .
3) To make $\sum b_n = +\infty$ we take $n_r so that $p_1 + \cdots + p_n \geq 1$
 p_r the first time. Then take $p_1 + \cdots + p_n - q_1 \leq add$ enough p_s so that
 $p_1 + \cdots + p_{n_1} - q_1 + p_{n_1+1} + \cdots + p_{n_2} \geq 2$ for the first time.
Then substract $q_2 \geq a ddd p_s$ to be ≥ 3 , etc.
By construction, this series reasoninges $\sum a_{n_1}$ (some means as claim 1)
 $\leq since p_{n_1} q_{n_1} - q_{n_2} - \cdots - q_{m_1} \leq -1$ by the first time, then
 $q_1 + \cdots + p_n - q_n + p_n - q_n - q_n - q_n - q_n = 1$ by the first time.
Then substract $q_2 \geq a ddd p_s$ to be ≥ 3 , etc.
By construction, this series reasoninges $\sum a_{n_1}$ (some means as claim 1)
 $\leq since p_{n_1} q_{n_1} - q_{n_2} - \cdots - q_{m_1} \leq -1$ by the first time, then
 $q_1 + q_2 - q_2 - \cdots - q_{m_1} \leq -1$ by the first time, then
 $q_1 + q_2 - q_2 - \cdots - q_{m_1} \leq -1$ by the first time, then
 $q_1 + q_2 - \cdots - q_{m_1} + p_1 - q_{m_1+1} - \cdots - q_{m_2} \leq -2$, etc.$

l