Lecture LV: \$14.1 Introduction to power series iss \$14.2 The interval of convergence of a power series 155 D GOALS: () given a power series $\sum_{n=1}^{\infty} a_n x^n$ (consergent for x=0), letermine all values of x that make it consergent / absolutely consergent / conditionally conservent. 2) Try to acomparize this power series (newed as a function of x) as a known function (lementary, whenever possible). This is often used to recognize solutions to differential equations. §1. Examples: () Fix $f(x) = \sum_{n=0}^{\infty} x^n$ (geometric services) . We know fix, converges absolutely po 0<1×1<1 by Ratio Test $a_n = |x^n| \qquad so \qquad \frac{q_{n+1}}{q_n} = \frac{|x|^{n+1}}{|x|^n} = |x|$ If |x| < 1: $\sum_{n=1}^{\infty} q_n$ inverge IF IXI>I : È an direrges • fro) = 1 so it converges . If x > 1 $x^n \longrightarrow \infty \neq 0$ so $\sum_{n=0}^{\infty} x^n$ diverges $. Tr x=1 \qquad x^{n}=1 \longrightarrow 1 \neq 0 \quad s_{0} \qquad \sum_{n=0}^{n} 1 = \frac{1}{n}$. If X = -1 $X^{n} = (-1)^{n}$ has no limit so $\sum_{n=0}^{\infty} (-1)^{n}$ diverges x" _____ so ~~ ~~ diverges · It ×<-1 <u>Conclusion</u>: Domain of h = (-1,1) & h_{∞} converges absolutily in T then T its domain. Furthermore, $F(x) = \frac{1}{1-x}$ for -1 < x < 1. (x) Note that i cannot be evaluated at x=1. In particulas, the equality in (x) is my valid for -1<x<1 & cannot be extended beyond this interval.

(2)
$$e^{x} = \sum_{n=0}^{\infty} \frac{x^{n}}{n!} = 1 + x + \frac{x^{2}}{2} + \frac{x^{3}}{6} + \frac{x^{4}}{2^{4}} + \cdots + \frac{1}{2^{n}} \text{ all } x.$$

Again: we use the Ratio Test to check the series converges absolutely for all values of $x \neq 0$ (for x=0 we get 1)

$$q_{n} = \frac{|\chi|^{n}}{n!} \quad s_{0} \quad \frac{q_{n+1}}{q_{n}} = \frac{|\chi|}{(n+1)!} \frac{|\chi|^{n}}{n!} = \frac{|\chi|}{|\chi|^{n}} \frac{n!}{(n+1)!} = \frac{|\chi|}{(n+1)n!} \frac{|\chi|}{n+1}$$

$$\lim_{n \to \infty} \frac{q_{n+1}}{q_{n}} = 0 \quad s_{0} \quad \text{the series converges absolutely for all } \chi \neq 0.$$

$$Q$$
: Why is the series = e^{\times} ?
For this, we need to remember that e^{\times} is the unique solution to the
differential equation $\begin{cases} f'_{1\times} = f_{1\times}, \\ f'_{1\times} = f_{1\times}, \end{cases}$

We next confirm that
$$\sum_{n=0}^{\infty} \frac{x^n}{n!}$$
 also solves the same equation x with the same initial andition. This forces both functions to agree!
Q How to solve $F'=F$ is a power series?

Propose
$$f_{(x)} = q_0 + q_1 x + q_2 x^2 + q_3 x^3 + \cdots = 8$$
 differentiate term - by -term
 $f'_{(x)} = q_1 + 2q_2 x + 3q_3 x^2 + 4q_4 x^3 + \cdots$
Then the steem equality:

L'dulity of cenies is quanantied by lum-by-lum equality:
instant:
$$q_0 = q_1$$

x-tum: $q_1 = 2q_2$ and $q_2 = \frac{q_1}{2} = \frac{q_0}{2}$
 x^2 -tum: $q_2 = 3q_3$ and $q_3 = \frac{q_2}{3} = \frac{q_0}{3.2} = \frac{q_0}{3!}$
 x^3 -term: $q_3 = 4q_4$ and $q_4 = \frac{q_3}{4} = \frac{q_0}{4!s_2} = \frac{q_0}{4!}$
 $\prod_n equality: q_n = \frac{q_0}{n!}$
So $f_{(x_2)} = \sum_{\substack{n=0 \ n!}}^{\infty} \frac{q_0}{n!} = q_0 \sum_{\substack{n=0 \ n!}}^{\infty} \frac{x^n}{n!}$ (unrequite exception to the equation of the equation of

(3)
$$\ln(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \dots = \sum_{n=1}^{\infty} \frac{(-1)^{n+1}x^n}{n}$$

(3) $\ln(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \dots = \sum_{n=1}^{\infty} \frac{(-1)^{n+1}x^n}{n}$
(4) $\ln(1+x)$ is only indiced for $1+x>0$, so $x>-1$.
The series converges absolutely for $o(|x|<1)$ by the Ratio Test:
 $a_n = \left\lfloor \frac{(-1)^{n+1}x^n}{n} \right\rfloor = \frac{|x|^n}{2n}$
 $a_{n+1} = \frac{|x|^{n+1}}{n+1} / \frac{|x|^n}{|x|} = \frac{|x|}{n+1} / \frac{1}{|x|} \xrightarrow{n} = \frac{1}$

Intequale the series term -by-term to get $\ln(1+\chi) = \int \frac{1}{1+\chi} d\chi = \int \frac{-\chi}{2} + \frac{\chi^2}{3} - \frac{\chi^4}{4} + \frac{\chi^5}{5} + \cdots + C = \sum_{n=1}^{\infty} \frac{(-1)^{n+1}\chi^n}{n} + C$ $= -\frac{\chi^2}{2} + \frac{\chi^3}{3} - \frac{\chi^4}{4} + \frac{\chi^5}{5} + \cdots + C = \sum_{n=1}^{\infty} \frac{(-1)^{n+1}\chi^n}{n} + C$ To ditermine C we inducate at $\chi_{=0}$: $0 = \ln(1) = 0 + C$ so C = 0. We include : $\ln(1+\chi) = \sum_{n=1}^{\infty} \frac{(-1)^{n+1}\chi^n}{n} + C$ is also relid for $\chi_{=1}$. by a separate calculation.

These 3 examples show as that given a prover revers $\sum_{n=0}^{\infty} a_n x^n$ we first must determine the regim where it currences a mary them we can try to recognize this function as an elementary me. This function may not be defined everywhere a its domain can be larger than the domain of the prover series.

Q To what extent are the examples above typical?
Useful Lemma: (1) If a power suices
$$\sum_{n=0}^{\infty} a_n X^n$$
 converges for some $x=c \ll c \neq 0$
then it enverges absolutely for all x with $|x| \leq |c|$.
(z) If the power suices $\sum_{n=0}^{\infty} a_n X^n$ diverges for $x=b$, then it diverges for all
 x with $|x| > |b|$.

Ne'll discuss the groof in the next lecture. Pictorially: abs. com abs. com

We check the statement in the examples
We check the statement in the examples

$$\sum_{n=0}^{\infty} x^{n} \quad \text{diverge for } x=1 \quad \text{so diverge for all } |x| > 1$$
. The case $x=-1$ needs to be addressed separately: it diverges.
. The case $x=-1$ needs to be addressed separately: it diverges.
. The case $x=-1$ needs to be addressed separately: it diverges.
. The case $x=-1$ needs to be addressed separately: it diverges.
. The case $x=-1$ needs to be addressed separately: it diverges.
. The case $x=-1$ needs to be addressed separately: it diverges.
. The case $x=-1$ needs to be addressed separately: it diverges absorbitly is $|x| < c$.
. The case $x=-1$ needs $|x| < c$. (this works for $x=1$, so it curves absorbitly
 $|x| < 1$.
. It diverges for $|x| > 1$.
. It diverges for $|x| > 1$.
. Inditional curvegence for $-1 < x < 1$
. Inditional curvegence for $x=1$
. Divergence for $|x| > 1$.
. Divergence for $|x| < 1$.