Lecture LVI: $\$ 14.2$ The internal of consergence of a powes series
Recall: $f(x)=a_{0}+a_{1} x+a_{2} x^{2}+\cdots=\sum_{n=0}^{\infty} a_{n} x^{n}$ is a proer series in x - $f(x)$ is a functim of $x, f(0)=a_{0}$

Q1: What's the dumain of f ? Name: Interval of Consegence.
Q2: Can we find an clementary functim uppesenting f? Tools: Integeate or Differentiate Term-by-Tem, view $f(x)$ as a solution to a differential squation with dementang solution (Example: e^{x} sobes $\quad \begin{aligned} & f^{\prime}=f \\ & f_{(0)}=1\end{aligned}$ a sodoes $\sum_{n=0}^{\infty} \frac{x^{n}}{n!}$)
Q3: Can we find proun suis upresmenting any fenctim? m> Taytor series.
EXAMPLE: $f_{(x)}=\sum_{n=0}^{\infty} x^{n}$ is defined $f r-1<x<1$ e it equals $\frac{1}{1-x}$ in this $\begin{gathered}\text { ranges. }\end{gathered}$
31 Inteural of Converguce:
Very Useful Theorem: Consider $f(x)=\sum_{n=0}^{\infty} a_{n} x^{n}$:
(1) If $f(x)$ convenges at $x=c \& c \neq 0$, then it anvenges absolutily for all x with $|x|<|c|$
(2) If $h(x)$ disenges at $x=b$, then it divenges forall x with $|x|>|b|$

Example aboe: $f(x)$ direnges at $x=1$ so it divenges $|s| x \mid>1$
$f(x)$ ununges for any $|c|<1$ so it cunsuges abs revidey fos $|x|<C \quad m>$ consenges absolutely in $(-1,1)$.
Only missing pt is $x=-1$, We check by hand it desenges.
EXAMPLE 2: $\sum_{n=0}^{\infty} \frac{x^{n}}{n!} \quad$ consenges absolutily $p>$ any $x . \quad\left(=e^{x}\right)$
Why? Fix any $c>0$.
Ratio Test $\frac{b_{n+1}}{b_{n}}=\frac{c^{n+1}}{(n+1)!} / \frac{c_{n}}{n!}=\frac{c}{n+1} \longrightarrow 0<1$ so unterges fos any $c>0$

So By the Thoum, we hase absolute contugence in $(-c, c)$. But $c>0{ }^{156(2)}$ is arbitany, os we hase absolute unsengence esery cotere.

Consequence: We hase 3 prssible scenarios:
(1) Absolute ansergence excergwhere
(2) Consergence only at $x=0$
(3) We can find $r>0$ minimal where h is abs. consegent in $(-r, r)$ \& disegent $|n| x \mid>r \quad(r=$ radius of ansecpence $=R O C)$. The caves $x=r \& x=-r$ hase to be cheched by hand sepanately.

Proof of the Theorm: We use comparisn theorens.
(1) Suppose of conseuges for $x=c \& c \neq 0$, then $a_{n} c^{n} \xrightarrow[n \rightarrow \infty]{\longrightarrow}$. This mans that exentaally (f) $n \geqslant n_{0}$) we must have $\left|a_{n} c^{n}\right|<1$ (Take $\varepsilon=1$ in the definition of limit)
BuT them if $|x|<|c|$, we have

$$
\left|a_{n} x^{n}\right|=\left|a_{n}\left(\frac{x}{c} c\right)^{n}\right|=\left.|\underbrace{\left|a_{n} c^{n}\right|}_{<1}| \frac{x}{c}\right|^{n}<\left|\frac{x}{c}\right|^{n} \text { fo } n \geqslant n_{0} \text {. }
$$

Scting $r=\left|\frac{x}{c}\right|<1$ gives

$$
\sum_{n=n_{0}}^{\infty}\left|a_{n} x^{n}\right| \leq \sum_{n=n_{0}}^{\infty} r^{n}=r^{n_{0}}+r^{n_{0}+1}+\cdots=r^{n_{0}} \sum_{n=0} r^{n}=r^{r_{0}}
$$

By Comparism $\sum_{n=n 0}^{\infty}\left|a_{n} x^{n}\right|$ carserpes, so $\sum_{n=0}^{\infty}\left|a_{n} x^{n}\right|$ unsuges or as well.
Conclusin: $\sum_{n=0}^{\infty} a_{n} x^{n}$ consenges a^{n} solutely $\quad|>|x|<|c|$.
(2) We anger by controdictim. Suppse $\sum_{n=0}^{\infty} a_{n} x^{n}$ diserges fos $x=b$ but conserges fs $x=d$ with $|d|>|b|$. Then by (1) the series conseepes absolutely in $x=b$ since $|b|<|d|$. But this cannst hoppen by one assumptims on b. Only way out: The senies direnges fo any x with $|x|>|b|$ $\frac{-d}{-b}$

Consequence: Given $\sum_{n=0}^{\infty} a_{n} x^{n}$ preciscly ONLY ONE of the following 3 situatians occurs:
(1) The series cansuges for all x (and absolutily!)

$$
\begin{align*}
& {[R=+\infty]} \\
& {[R=0]} \tag{2}
\end{align*}
$$

$$
\text { only fis } x=0
$$

(3) Thene is a pisitise nal member $R(=$ radies of ansengence) is which the seris. anseiges absolutily fs $|x|<R$
${ }^{2}$. diseiges for $|x|>R$
I! Nstheing can be said a prioi about $x= \pm R$. In each example, we must treat these 2 values separatuly

Intervals of ansegeince:
(1) $\mathbb{R}=(-\infty, \infty)$
(2) $[0,0]$
(3) $(-R, R),(-R, R],[-R, R)$ or $[-R, R]$
s2. Examples:
In queral : $R=$ ROC is cmputed with Ratio r Rsor Test.
(1) $\sum_{n=0}^{\infty} \frac{x^{n}}{n!} \quad R=+\infty$ by Ratio Test.
(2) $\sum_{n=0}^{\infty} n!x^{n} \quad R=0$

Ratio Test: $\quad \frac{a_{n+1}}{a_{n}}=\frac{(n+1)!|x|^{n+1}}{n!|x|^{n}}=|x|(n+1) \underset{n \rightarrow \infty}{\longrightarrow}$ fr all $x \neq 0$.
So no absslute consengence fs ary $x \neq 0$.
(3) (a) $(-R, R)$

$$
\sum_{n=0}^{\infty} x^{n} \quad(R=1)
$$

(b) $(-R, R]$
$n=0 \quad \sum_{n=1}^{\infty}$
$\sum_{n=0}^{\infty} \frac{x^{n}}{n+1}$
($R=1$)
(c) $[-R, R)$ ($R=1$)

Compute ROC using Ratio Test:

$$
\left|\frac{b_{n+1}}{b_{n}}\right|=\frac{|x|^{n+1}}{n+1} / \frac{|x|^{n}}{n}=|x| \frac{n}{n+1} \longrightarrow|x|
$$

$\left.\begin{array}{l}\text { - If }|x|<1 \text { we annuge (absolutily) } \\ \text { - If }|x|>1 \text { we divenge }\end{array}\right\}$ This frices $R=1$.
Endprint analygis:

- $x=1$: $\quad \sum_{n=0}^{\infty} \frac{1^{n}}{n+1}=\frac{1}{1}+\frac{1}{2}+\frac{1}{3}+\cdots=\sum_{n=1}^{\infty} \frac{1}{n} \quad$ divages
- $x=-1$: $\sum_{n=0}^{\infty} \frac{(-1)^{n}}{n+1}=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\cdots=\ln 2 \quad$ (cansenges by

Alternating series $T_{i s t} a_{n}=\frac{1}{n+1}>0, a_{n} \rightarrow 0$ o a_{n} deccuasing)
(d) $[-R, R] \quad \sum_{n=0}^{\infty} \frac{x^{n}}{n^{2}} \quad(R=1)$

Compute ROC by Ratio Test:

$$
\left|\frac{b_{n+1}}{b_{n}}\right|=\frac{|x|^{n+1}}{(n+1)^{2}} / \frac{|x|^{n}}{n^{2}}=|x|\left(\frac{n}{n+1}\right)^{2} \longrightarrow|x|
$$

$\left.\begin{array}{l}\text { - If }|x|<1 \text { we cransuge (absolutily) } \\ \text { - If }|x|>1 \text { we divenge }\end{array}\right\}$ This frces $R=1$.
Endpronts: $\quad x=1 \quad \sum_{n=0}^{\infty} \frac{1^{n}}{n^{2}}=\sum_{n=0}^{\infty} \frac{1}{n^{2}} \quad p$-seris with $p=2>1$, so it cusuges!
$x=-1 \quad \sum_{n=0}^{\infty} \frac{(-1)^{n}}{n^{2}}$ is absolutely unvergent, x it conruges.
Q What if we hase $\sum_{n=0}^{\infty} a_{n} \underbrace{(x-c)^{n}}_{=z}$?

1. Unpute $R=$ cadius of converguce fos $\sum_{n=0}^{\infty} a_{n} z^{n}$ n $R O C$ fo $f(x)$ is also R
2. Interval of convergence $f \rightarrow \sum_{n=0}^{\infty} a_{n} z^{+}$, say $[-R, R)$, then IOC if $f(x)$ is $[-R+c, R+c$) (shift Ioc by c).
