$$\frac{|ecture LV|: $14.2 The internal of changens of a productives uses
Recall: $f_{(X)} = a_0 + a_1 \times + a_2 \times \frac{a_1 \times \cdots}{a_1} = \sum_{n=0}^{\infty} a_n \times^n$ is a production in X
of the production of X , $f_{(0)} = a_0$
Q1: What's the domain of f ? Name: Internal of Conceptus.
Q2: Can be find an elementary function separation for a differential equation with
elementary solution ($\underline{Cxample}$: e^X solves $f' = f_1$ a so does $\sum_{n=0}^{\infty} \frac{x^n}{n!}$)
Q3: Can be find prove sums representing any function? Taylor verses.
EXAMPLE: $f_{(X)} = \sum_{n=0}^{\infty} x^n$ is defined for the quality territy.
Statistical of Convergence:
 $\frac{1}{2} \times \frac{1}{2} \times \frac{1}{2$$$

So By the Theorem, we have absolute consequence in (-c, c). But c>0¹⁵⁶ is arbitrary, so we have absolute consequence everywhere.

Insequence: We have a provide senarios:
() Absolute consequence encoupling
() Absolute consequence encoupling
() Anneque only at x=0
() We can find r>0 minimal when h is absomagent in (-r, r) a
binergent for
$$|x| > r$$
 ($r = nadius of consequence: ROC$). The cases
 $x=r \pm x=-r$ have to be checked by hand separately.
Proof of the Thurem: We use emposism theorems.
() Suppose F convergent for $x=c + c \neq 0$, then $a_nc^n \longrightarrow 0$. This
mans that exectually ($fr > n \ge n_0$) we must have $|a_nc^n| < 1$ (Take (or
in the definition of limit)
But then if $|x| < |c|$, we have
 $|a_n x^n| = |a_n (x c)^n| = |a_nc^n| |x|^n < |x||^n$ for $n \ge n_0$.
Setting $r = |x| < 1$ since
 $\sum_{n \ge n_0} |a_n x^n| \le \sum_{n \ge n_0} r^n = r^{n_0} + r^{n_0+1} + \cdots = r^{n_0} \sum_{l = 1} r^{n_0} + \frac{r^{n_0}}{l^{1-r_1}}$
By (imparism $\sum_{n \ge n_0} |a_n x^n|$ conseques , so $\sum_{n \ge 0} |a_n x^n|$ conseques as well.
(inclustin: $\sum_{n \ge 0} a_n x^n$ conseques absolutely for $|x| < |c|$.
(e) We argue by entirediction. Suppose $\sum_{n \ge 0} a_n x^n$ deverses for $x = b$ but
encourses for $x = d$ with $|d| > 161$. But this cannot happen by dece
assumptions $n = 0$. And using and to the series dimenses for any x with $|x| > 164$

$$\begin{array}{c} \underbrace{\operatorname{Insequence}_{X=0} \quad \left\{ \begin{array}{c} \operatorname{Int}_{X=0} \quad \left\{ x, x^{*} \right\} \text{ particuly } \underbrace{\operatorname{ONLY} \operatorname{ONE}_{X=0} \right\} \\ \left\{ \operatorname{Int}_{X=0} \quad \left\{ x, x^{*} \right\} \right\} \\ \left\{ \operatorname{Int}_{X=0} \quad \left\{ x \right\} \\ \left\{ x \right\}$$

LS6 🕑 Impute ROC using Ratio Test, $\left|\frac{b_{n+1}}{b_n}\right| = \frac{|x|^{n+1}}{n+1} \frac{|x|^n}{|x|^n} = |x| \frac{n}{n+1} \frac{|x|}{|x|^n}$ • If |x| < 1 we connege (absolutily) } This frees R=1. • If |x| > 1 we diverge Endpoint analysis: • X = 1: $\sum_{n=0}^{\infty} \frac{1^n}{n+1} = \frac{1}{1} + \frac{1}{2} + \frac{1}{3} + \cdots = \sum_{n=1}^{\infty} \frac{1}{n}$ diverges • X = -1: $\sum_{n=0}^{\infty} \frac{(-1)^n}{n+1} = 1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \dots = \ln 2$ (conserve, by Alternating series Test que 1 20, qu - 0 à qu decreasing) (d) [-R, R] $\sum_{n=0}^{\infty} \frac{\chi^{n}}{n^{2}}$ (R=1) Compute ROC by Ratio Test: $\left|\frac{b_{n+1}}{b_n}\right| = \frac{|x|^{n+1}}{(n+1)^2} \frac{|x|^n}{|x|^2} = |x| \left(\frac{n}{n+1}\right)^2 \longrightarrow |x|$ • If |X| < 1 we connege (absolutily) } This forces R = 1. • If |X| > 1 we diverge Endpoints: X = 1 $\sum_{n=0}^{\infty} \frac{1^n}{n^2} = \sum_{n=0}^{\infty} \frac{1}{n^2}$ [-service with p=2>1, so it consuges! $\frac{X=-1}{\sum_{n=0}^{1}} \frac{(-1)^n}{n^2}$ is absolutely invergent, so it consuges. Q What if we have $\sum_{n=0}^{\infty} a_n (x-c)^n$? 1. Compute R= radius of convergence for Sanza no ROC for fix is also R 2. Interval of convergence for $\Sigma_{q_u} Z^{-}$, say [-R, R), then IOC for fix, is [-R+c, R+c) (shift Ioc by c)