$$\frac{\left\lfloor etime \ L \ V \ H}{H} \quad Shis \ Differentiation & Integration of proversities Shift Taylor series a Taylor's formula
Thinking of proversions on polynomials with infinite Tails, we ark:
Q: law we differentiate / integrate proversions term -by-term?
A: YES, but the ensures are rather delicate (we need "uniform envergence"
for Appendix AIS)
Thurum: Fire $F(x) = \sum_{n=0}^{\infty} a_n x^n$ with radius of envergence $F > 0$, so Firsy
is a function $m(-R,R)$. Then:
(i) F_{100} is entineous $m(-R,R)$ a we get $F'(x)$ by term-by-term
differentiating: $F'(x) = (\sum_{n=0}^{\infty} a_n x^n)' = (a_0 + a_1 x + a_2 x^2 + a_3 x^2 + \cdots)'$
 $= a_1 + 2a_2 x + 3a_3 x^2 + \cdots = \sum_{n=0}^{\infty} ma_n x^{n-1}$.
(a) firsh can be integrated term-by-term $m(-R,R)$:
 $\int_{0}^{\infty} f(t) dt = \int_{0}^{\infty} \sum_{n=0}^{\infty} a_n t^n dt = \sum_{n=0}^{\infty} \int_{0}^{\infty} a_n t^n dt = \sum_{n=0}^{\infty} a_n \frac{t^{n+1}}{n^{n+1}} \left| \sum_{k=0}^{k=\infty} \sum_{n=0}^{\infty} \frac{a_k x^n}{n^{n+1}} \right|_{1+x}^{k=\infty} \sum_{n=0}^{\infty} \frac{a_k x^{n-k}}{n^{n+1}} \left| \sum_{n=0}^{k=\infty} \sum_{n=0}^{\infty} \frac{a_k x^{n-k}}{n^{n+1}} \right|_{0}^{k} = \sum_{n=0}^{\infty} \frac{a_k x^{n-k}}{n^{n+1}} \right|_{1+x}^{k} = \sum_{n=0}^{\infty} (-x)^n - p(-x)^n (-1)^n$.
Tategrate term-by-term to get
 $In (1+x) = \int_{0}^{\infty} \frac{1}{1+k} dt = \int_{0}^{\infty} \sum_{n=0}^{\infty} (-x)^n - p(-x)^n (-1)^n$.
This equality is valied $m(-1,1)$$$

So
$$f$$
 is a solution to the differential equation $\{y'=y \}$. By uniqueness of solutions, we get $f(x_1) = e^{x}$ (frall $x \in \mathbb{R}$) $\{y(0)=1\}$

EXAMPLE3:
$$\sum_{n=1}^{\infty} n^2 X^n = X + 4X^2 + 9X^5 + 16X^4 + \cdots$$

Q: What function is represented by
$$f(x)$$
?
A: We work with g instead. $g(x) = \sum_{x=0}^{\infty} (n+1)^2 x^n$
Integrate $g(x)$ term-by-term $h(x) = \int g(t) dt$ also has ROC=1.

$$h_{1(X)} = \sum_{N=0}^{\infty} \int_{0}^{X} (n_{N})^{2} t^{n} dt = \sum_{n=0}^{\infty} (n_{N})^{2} \frac{t^{n_{N}}}{n_{N}} \Big|_{0}^{X} = \sum_{N=0}^{\infty} (n_{N})^{X} \int_{0}^{N+1} c_{D} E$$

$$= x + 2x^{2} + 3x^{3} + \cdots = x \left(\frac{1 + 2x + 5x^{2} + \cdots}{n_{N}} \right)$$
The bunction j also has $ROC = 1$. $j(x) = \sum_{N=0}^{\infty} (n_{N})^{X}$
We interpret j term -by-term $e_{N} e_{N} a num function $P(x)$ with ROC_{21}
 $P(x) = \int_{0}^{x} j(t) dt = \int_{0}^{x} \sum_{N=0}^{\infty} (n_{N})t^{n} dt = \sum_{N=0}^{\infty} \int_{0}^{x} (n_{N})t^{n} dt = \sum_{N=0}^{\infty} t^{n+1} \Big|_{0}^{X}$

$$= \sum_{N=0}^{\infty} x^{N+1} = x + x^{2} + x^{5} + \cdots = x (1 + x + x^{2} + \cdots) = \frac{x}{1 + x}$$
Now we assume the position by the Fundamental Theorem of Colordans;
 $P(x) = \frac{1 - x}{1 - x} - x \sum (\frac{1 - x}{1 - x})^{2} = \frac{1}{1 - x^{2}}$

$$= h_{1}(x) = \frac{1 (1 - x)^{2} - x (1 - x)^{2}}{(1 - x)^{2}} = \frac{1}{1 - x^{2}}$$

$$= h_{1}(x) = \frac{x}{5}(x) = \frac{x(1 + x)}{(1 - x)^{3}} = \frac{1 (1 - x)^{3}}{(1 - x)^{3}}$$

$$\frac{Londonain}{(1 - x)^{3}} = \frac{1}{(1 - x)^{3}}$$

$$\frac{Londonain}{(1 - x)^{3}} = \frac{L(1 + x)}{(1 - x)^{3}}$$

$$\frac{Londonain}{(1 - x)^{3}} = \frac{L(1 + x)}{(1 - x)^{3}}$$

$$\frac{Londonain}{(1 - x)^{3}} = \frac{L(1 + x)}{(1 - x)^{3}}$$

$$\frac{Londonain}$$$

$$F''(x) = 2Q_2 + 3|Q_3 x + 4.3 Q_4 x^2 + ...$$

$$f_{n}^{(n)}(x) = \frac{|x|q_{3}| + 4! \cdot 2 \cdot 2 \cdot q_{1} \times 1 \cdots}{|q|q_{4}| + \cdots}$$

$$f_{n}^{(n)}(x) = \frac{|q|q_{4}| + \cdots}{|q|q_{4}| + \cdots}$$

$$\frac{|q|q_{4}| + \cdots$$

Natural question: When can we represent f by its Taylor series around a point c in its domain? ie when is $f(x) = \sum_{n=0}^{\infty} \frac{f(n)}{n!} (x-c)^n ? (k)$

It's enough to hows in the case
$$c=0$$
. Assume the Taylor since has ⁴⁵⁷ B
ROC = R >0. We can divide (b) by estimating the enver of approximating
F by a truncation of the Taylor series. This is the so called Lagrange
Remainder Formula.
 $S_{N}(x) = f(o) + f'(o) \times + \frac{f''(o)}{2} \times^{2} + \frac{f(3)}{3} \times^{5} + \dots + \frac{f(b)}{N} \times^{N}$
phynimial of degree $\in N$ in \times
(all $R_{N}^{(F)}(x) = S_{N}(x) - f(x)$ (Remainder)
Proposition: $\sum_{n=0}^{\infty} \frac{f^{(n)}(o)}{n} \times^{n}$ enverges to $f(x)$ if, and may if, $IR_{N}^{(F)}(x) \xrightarrow{N \to \infty}$
for every \times in $(-R, R)$
A This becomes a useful statement why if we have a formula for $R_{N}^{(F)}(y)$
that we can use to check $IR_{N}(F)(x) \xrightarrow{N \to \infty}$

$$R_{N}(F)_{(X)} = \frac{F^{(N+1)}}{(N+1)!} X^{N+1}$$
 for some 6 between 0 a X.

Obs: We can extend this for Taylor sinces expansions around c. Then:

$$R_{N}(F)(x) = \frac{F_{(b)}^{N+1}}{(N+1)!} (x-c)^{N+1} \int \mathcal{F} sime b between C \leq x.$$