Lecture LVII: §14.3 Differentiation \& Integration of pron series §14.4 Taper series \& Taylor's formula
si Decirvatires a Integrals of proven series:
Thinking of prow series as flegnomials with intimate tails, we ask:
Q: Can we differentiate / integrate press series term-by-term?
A: YES, but the reasms are rather delicate (we need "unitrom convergence" from Appendix AIS)
Theron: $F\left(x f(x)=\sum_{n=0}^{\infty} a_{n} x^{n}\right.$ with radius of anvergence $R>0$., so $f(x)$ is a function $m(-R, R)$. Them:
(1) $f_{(x)}$ is continuous on $(-R, R)$
(2) $f(x)$ is differentiable $m(-R, R)$ \& we get $f^{\prime}(x)$ by teem-by -term differentiation:

$$
\begin{aligned}
f^{\prime}(x) & =\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right)^{\prime}=\left(a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+\cdots\right)^{\prime} \\
& =a_{1}+2 a_{2} x+3 a_{3} x^{2}+\cdots=\sum_{n=1}^{\infty} n a_{n} x^{n-1} .
\end{aligned}
$$

(3) $f(x)$ can be integrated term-by-Term m $(-R, R)$:

$$
\int_{0}^{x} f(t) d t=\int_{0}^{x} \sum_{n=0}^{\infty} a_{n} t^{n} d t=\sum_{n=0}^{\infty} \int_{0}^{x} a_{n} t^{n} d t=\left.\sum_{n=0}^{\infty} a_{n} \frac{t^{n+1}}{n \rightarrow 1}\right|_{t=0} ^{t=x}=\sum_{n=0}^{\infty} a_{n} x^{n+1}
$$

Obseuse: We can meat the press in (2) (f^{\prime} is a pron series \&its ROC is $=R$) and get that $f(x)$ is intimitely differentiable on $(-R, R) \&$

$$
\left.\frac{d^{k} f}{d x^{k}}=\sum_{n=k}^{\infty} n(n-1) \cdots(n-k+1) a_{n} x^{n-k}=\sum_{n=k}^{\infty} \frac{n!}{(n-k)!} a_{n} x^{n-k} \quad \right\rvert\, 1 x k=12 \ldots
$$

§2. Application 1: find elementary fundims pr prose series
EXAMPLE 1: $\quad f(x)=\frac{1}{1+x}=\sum_{n=0}^{\infty}(-x)^{n}$ in x in $(-1,1)$.
Integrate tum-by-Tum to get $_{x}$

$$
\begin{array}{r}
\ln (1+x)=\int_{0}^{x} \frac{1}{1+t} d t=\int_{0}^{x} \sum_{n=0}^{\infty}(-t)^{n} d t=\left.\sum_{n=0}^{\infty} \frac{(-1)^{n}}{n+1} t^{n+1}\right|_{0} ^{x}=\sum_{n=0}^{\infty}(-1)^{n} x^{n+1} \\
\text { This equality is valid } m(-1,1) \\
=x-\frac{x^{2}}{2}+\frac{x^{3}}{3}-\frac{x^{4}}{4}+\cdots
\end{array}
$$

Q lan we push it to $x= \pm 1$?
A Fr $x=1 \ln (2) \stackrel{?}{=} 1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\cdots$ the V
FD $x=-1 \quad \ln (0) \stackrel{?}{=}-1-\frac{1}{2}-\frac{1}{3}-\frac{1}{4}+\cdots=-\sum_{n=1}^{\infty} \frac{1}{n} \quad$ both disenge.
EXAMPLE 2: $f_{(x)}=\sum_{n=0}^{\infty} \frac{x^{n}}{n!}$ has $R=+\infty$ by Ratio Test
Compute fo term-by-tum:

$$
f^{\prime}=\left(\sum_{n=0}^{\infty} \frac{x^{n}}{n!}\right)^{\prime}=\sum_{n=1}^{\infty} \frac{n x^{n-1}}{n!}=\sum_{n=1}^{\infty} \frac{x^{n-1}}{(n-1)!}=1+x+\frac{x^{2}}{2}+\frac{x^{3}}{3!}+\cdots=f
$$

 of solutions, we get $f(x)=e^{x}(\not)$ all x m $\left.\mathbb{R}\right)$
EXAMPLE 3: $\quad \sum_{n=1}^{\infty} n^{2} x^{n}=x+4 x^{2}+9 x^{3}+16 x^{4}+\cdots$.
Claim: $R O C=1$.
Why? Use Ratio Test!

$$
\left|\frac{b_{n+1}}{b_{n}}\right|=\frac{(n+1)^{2}|x|^{n+1}}{n^{2}|x|^{n}}=\left(\frac{n+1}{n}\right)^{2}|x| \underset{n \rightarrow \infty}{\longrightarrow}|x|
$$

$\left.\begin{array}{l}\text { Consenges if }|x|<1 \\ \text { Disenges if }|x|>1\end{array}\right\}$ so by definitive $R=1$.
S, $f(x)=\sum_{n=1}^{\infty} n^{2} x^{n}=x(\underbrace{\left.1+2^{2} x+3^{2} x+4^{2} x^{3}+\cdots\right)}_{=: g(x)}$ is defend in
$(-1,1)$. It debenges $f>x= \pm 1$ since $n^{2}(\pm 1)^{n} \nrightarrow 0$.
In particular $g(x)$ also has $R O C=1$.
Q: What Function is represented by $f(x)$?
A: We work with g instead. $\quad g(x)=\sum_{x=0}^{\infty}(n+1)^{2} x^{n}$
Integrate $f(x)$ term-by-tern $h(x)=\int_{0} f(t) d t$ also has $R O C=1$.

$$
\begin{aligned}
h(x) & =\sum_{n=0}^{\infty} \int_{0}^{x}(n+1)^{2} t^{n} d t=\left.\sum_{n=0}^{\infty}(n+1)^{2} \frac{t^{n+1}}{n+1}\right|_{0} ^{x}=\sum_{n=0}^{\infty}(n+1) x^{n+1} \\
& =x+2 x^{2}+3 x^{3}+\cdots=x(\underbrace{\left.1+2 x+3 x^{2}+\cdots\right)}_{=i j(x)}
\end{aligned}
$$

- The function j also has $R O C=1 . j(x)=\sum_{n=0}^{\infty}(n+1) x^{n}$

We integrate j term-by-Term \& get a new fenctim $P(x)$ with $R O C=1$

$$
\begin{aligned}
P(x) & =\int_{0}^{x} j(t) d t=\int_{0}^{x} \sum_{n=0}^{\infty}(n+1) t^{n} d t=\sum_{n=0}^{\infty} \int_{0}^{x}(n+1) t^{n} d t=\left.\sum_{n=0}^{\infty} t^{n+1}\right|_{0} ^{x} \\
& =\sum_{n=0}^{\infty} x^{n+1}=x+x^{2}+x^{3}+\cdots=x\left(1+x+x^{2}+\cdots\right)=\frac{x}{1-x}
\end{aligned}
$$

Now we reverse the poses by the Fundamental Thurem of Calculus:

$$
\begin{aligned}
& \text { P } P(x)=\frac{x}{1-x} \leadsto\left(\frac{x}{1-x}\right)^{\prime}=P(x)^{\prime}=j(x) \\
& j(x)=\frac{(1-x)-x(-1)}{(1-x)^{2}}=\frac{1}{1-x^{2}} \\
& \text { - } h(x)=x j(x)=\frac{x}{(1-x)^{2}} \\
& \text { So } g(x)=h^{\prime}(x)=\frac{1(1-x)^{2}-x 2(1-x)(-1)}{(1-x)^{4}}=\frac{(1-x)(1-x+2 x)}{(1-x)^{3}}=\frac{1+x}{(1-x)^{3}} \\
& \text { - } f(x)=x g(x)=\frac{x(1+x)}{(1-x)^{3}}
\end{aligned}
$$

Conclusion: $f(x)=\frac{x(1+x)}{(1-x)^{3}}$ can be expressed as a poon series on $(-1,1)$, namely $\sum_{n=1}^{\infty} n^{2} x^{n}$

Es Application 2: Taylor series
Fix $\quad f_{(x)}=\sum_{n=0} a_{n} x^{n}$ with $\quad R O C=R>0$.

- We know $G_{1}, f^{\prime}, f^{\prime \prime}, \ldots, f^{(k)}, \ldots$ all exist \& are powerseribs with $R O C=R \geq 0$

$$
\begin{aligned}
& f^{\prime}(x)=a_{1}+2 a_{2} x+3 a_{3} x^{2}+4 a_{4} x^{3}+\cdots \\
& f^{\prime \prime}(x)=\quad 2 a_{2}+3!a_{3} x+4.3 a_{4} x^{2}+\cdots
\end{aligned}
$$

$$
\begin{array}{ll}
f^{\prime \prime \prime}(x)= & 3!9_{3}+4 \cdot 3 \cdot 29_{4} x+\cdots \\
f^{(4)}(x)= & 4!9_{4}+\cdots
\end{array}
$$

- In general: $f^{(n)}(x)=n!a_{n}+$ terns containing x as a factor (series ravishing at $x=0$ int ROC $=R$)
So $f^{(n)}(0)=n!a_{n}+0=n!a_{n}$ gives
Taylor Coefficient: $a_{n}=\underline{f_{(0)}^{(n)}}$ fr all $n=0,1,2, \ldots \ldots\left(\begin{array}{l}(0!=1 \\ \text { consentim })\end{array}\right.$ ansention)
Conclusion: If a function can be represented by a prover series with $R O C=R>0$ then, the series must be the Taylor series (around $x=0$), ie

$$
f(x)=\sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} x^{n}=f(0)+f^{\prime}(0) x+\frac{f^{\prime \prime}(0)}{2!} x^{2}+\frac{f_{(0)}^{(3)}}{3!} x^{3}+\cdots
$$

Q: Can we reserves this? Meaning, assuming we have a function which is differentiable up to any order at $x=0$, we can write down its Taylor series $\sum_{n=0}^{\infty} \frac{f^{n}(0)}{n!} x^{n}$. Tres this series uppesent $f(x)$?
A: NOT always!
$\frac{\text { EXAMPLE: }}{(\text { EX } 42 \xi 12.3)} f(x)=\left\{\begin{array}{ll}e^{-1 / x^{2}} & \text { if } x \neq 0 \\ 0 & \text { if } x=0\end{array} \quad\right.$ We can compute all $f_{(0)}^{(n)}$ by afimition \& we at $f_{(0)}^{(n)}=0$ fr all n. This mans that the Tayls seuss is $\sum_{n=0}^{\infty} 0 x^{n}=0$. But f is not the constant function 0 , it's just almost flat man. 0 .

Easy extension: Taylor series of a function f around a fixed print $x=C$ in the domain of f is $\sum_{n=0}^{\infty} \frac{f^{(n)}(c)}{n!}(x-c)^{n}$.
Natural question: When can we represent f by its Taybr series around a point c in its domain? ie when is $f(x)=\sum_{n=0}^{\infty} \frac{f_{(c)}^{(n)}(x)}{n!}(x-c)^{n}$?

It's enough to fores m the case $c=0$. Assume the Taylor series has $(5\rangle \overline{5}$ ROC $=R>0$. We can decide (*) by estimating the enos of approximating f by a turucation of the Taylor series. This is the so called Lagrange
Remainder Formula.

$$
S_{N(x)}=f(0)+f^{\prime}(0) x+\frac{f^{\prime \prime}(0)}{2} x^{2}+\frac{f_{(0)}^{(3)}}{3!} x^{3}+\cdots+\frac{f_{(0)}^{(N)}}{N!} x^{N}
$$

polynomial of degree $S N$ in x

$$
\text { Call } R_{N}^{(f)}(x)=S_{N}(x)-f(x)
$$

(Remaindu)
Peoprition: $\sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} x^{n}$ converges to $f(x)$ if, and $n l y$ if, $\left|R_{N}(f)(x)\right| \rightarrow 0$ for every x in $\left(-R, R_{i}\right)$
\therefore This becomes a useful statement sly if we have a fromela $f \rightarrow R_{N}(G)_{(x)}$ that we can use T_{0} check $\left|R_{N}(F)_{(x)}\right| \underset{N \rightarrow \infty}{\longrightarrow}$
Lagrange Remainder Formula

$$
R_{N}(f)_{(x)}=\frac{f^{(N+1)}(5)}{(N+1)!} x^{N+1} \quad \text { fr same } b \text { between } 0 \& x \text {. }
$$

Obs: We can extend this for Taylor series expansions around c. Then: $R_{N}(f)(x)=\frac{f^{N+1}(L)}{(N+1)!}(x-c)^{N+1}$ fo some b between $c \& x$.

