Lecture LVIII: $\$ 14.4$ (cat.) Taylor series a Taylor's fromila
S1 Taylor sames:
Recall: The Taylor series of a function f centered at c (with c in the domain $f f)$ is $\sum_{n=0}^{\infty} \frac{f^{(u)}(c)}{n!}(x-c)^{n}$

We need f to be differentiable up T_{0} any order at $x=c$.
Q: When is if equal to its Taylss sues a sound c?
A NOT aluray (example for lat lecture)
Next approach: Truncate the Taylor series by wooing with a partial sum \& sotimate the erse in the approximation.
White $S_{N}(x)=f_{(c)}+f^{\prime}(c)(x-c)+\frac{f^{\prime \prime}(c)}{2}(x-c)^{2}+\cdots+\frac{f^{(N)}(c)}{N!}(x-c)^{N}$
This is the Taylor polynomial of dye $\leq N \quad\left(=N\right.$ if $\left.f^{N}(c) \neq 0\right)$
Write $R_{N}(f)(x)=f(x)-S_{N}(x)$
Pappritim: $\sum_{N=0}^{\infty} \frac{f_{(N)}^{(N)}}{N!}(x-c)^{N}$ with $R o c=R>0$ unsenges to $h(x)$ if, and moly if $\left|R_{N}(F)(x)\right| \underset{N \rightarrow \infty}{\longrightarrow}$ is erect x in $(-R+c, R+c)$.
<circle>. The No that works for mex may not he large enough for another x. - This usult is only uncfel for practical purses. if we hare a formula for $R_{N}(f)(x)$

Lagrange Remainder Formula: $R_{N}(f)(x)=\frac{f^{(N+1)}(b)!}{(N+1)!}(x-c)^{N+1}$ for b in between
Q: Why should we expect this?

- $N=0$: $\quad R_{0}(f)(x)=f(x)-f(c)=f^{\prime}(b)(x-c)$ by the Mean Value Tum . The proof for higher N will insoles the Mean Value The as well.
Another rearm: Say $f_{(x)}=\sum_{n=0}^{\infty} \frac{f_{(n)}^{(n)}(x)}{n!}(x-c)^{n}$ with $R O C=R>0$

Thun: $\quad f(x)-S_{N}(x)=\sum_{n=0}^{\infty} \frac{f^{(n)}(c)}{n!}(x-c)^{n}-\sum_{n=0}^{N} \frac{f_{(c)}^{(n)}}{n!}(x-c)^{n}$

$$
=\sum_{n=N+1}^{\infty} \frac{f^{(n)}(c)}{n!}(x-c)^{n}=\frac{f^{(N+1)}(c)}{(N+1)!}(x-c)^{N+1}+\cdots
$$

Lagrange Formula replaces this Tail by $\frac{F^{(N+1)}(b)}{(N+1)!}(x-c)^{N+1}$ \& this value looks very similar to the $1^{\text {st }}$ tern of the Tail.
§2. Applications:
(1) Show $e^{x}=\sum_{n=0}^{\infty} \frac{x^{n}}{n!}$

- We know by the Ratio Test that $R O C=R>0$.

Q: What is the Taylor shies of e^{x} around $x=0$?
$\left.\begin{array}{ll}f(x)=e^{x} & \text { ns } \\ f_{(0)}=e^{0}=1 \\ f_{(x)}^{\prime}=e^{x} & \sim) \\ \vdots \\ f^{\prime}(0)=1 \\ (x)=e^{x} \text { mi s } & f^{(n)}(0)=1\end{array}\right\}$ so the Taylor sues is $\sum_{n=0}^{\infty} \frac{x^{n}}{n!}$

Remainder? $\quad\left|R_{N}\left(e^{x}\right)(x)\right|=\left|\frac{f^{(N+1)}(b)}{(N+1)!} x^{N+1}\right|=\left|\frac{e^{b}}{(N+1)!} x^{N+1}\right|=\frac{|x|^{N+1}\left|e^{b}\right|}{(N+1)!}$
with b in between 0 \& x.
. If $x>0 \quad\left|e^{b}\right|=e^{b}<e^{x}$
. If $x<0 \quad\left|e^{b}\right|=e^{b}<e^{0}=1$

$$
M=\max \left\{e^{x}, 1\right\}
$$

So we con bound $\left|R_{N}\left(e^{x}\right)(x)\right|$ independently of b ! We get:

$$
\left|R_{N}\left(e^{x}\right)_{(x)}\right| \leq \frac{|x|^{N+1}}{(N+1)!} M \underset{N \rightarrow \infty}{\longrightarrow} 0 \cdot M=0 \quad \text { (because } \sum_{n=0}^{\infty} \frac{x^{n}}{n!} \text { anseges). }
$$

In conclusion: $R_{N}\left(e^{x}\right)(x) \underset{N \rightarrow \infty}{\longrightarrow}$ in ency fixed x \& so e^{x} is represented by its Taylor sues, as we already knew.
(2) Taylor suies fs $\sin (x)$: We take $x=0$ as the center.

$$
\begin{array}{ll}
f(x)=\sin x & \leadsto f_{(0)}=0 \\
f^{\prime}(x)=\cos x & m s f^{\prime}(0)=1 \\
f^{\prime \prime}(x)=-\sin x & \text { ms } f^{\prime \prime}(0)=0 \\
f^{(3)}(x)=-\cos x & \text { ms } f^{(3)}(0)=-1
\end{array}
$$

$f^{(4)}(x)=\sin x$ as $f_{(0)}^{(4)}=0$ \& we refeat from bere on.
Cunclude: Tayls series mly insolses $0 \Delta \Delta$ proes of x a it alternate sipus $+\cdots+-$, te

$$
\begin{aligned}
& \text { Thus }+\cdots+- \text {, cte } \\
& \text { Tayls suies }=x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\frac{x^{7}}{7!}+\cdots=\sum_{n=0}^{\infty} \sqrt{(-1)^{n} \frac{x^{2 n+1}}{(2 n+1)!}}
\end{aligned}
$$

Only sedd prowers is consistent with sen x beeng an OSS functim

- Radius of consugence $=$? Use Ratio Test:

$$
(\operatorname{sen}(-x)=-\operatorname{sen} x)
$$

$$
\begin{aligned}
& b_{n}=\left|a_{n}\right|=\frac{|x|^{2 n+1}}{(2 n+1)!} \\
& \frac{b_{n+1}}{b_{n}}=\frac{|x|^{2 n+3}}{(2 n+3)!} / \frac{|x|^{2 n+1}}{(2 n+1)!}=\frac{|x|^{2}(2 n+1)!}{(2 n+3)!} \stackrel{\downarrow}{=} \frac{|x|^{2}}{\begin{array}{c}
\left.(2 n+3)(2 n+2)^{n \rightarrow \infty}\right)(2 n+2)(2 n+1)! \\
\text { frany fixed } x
\end{array}} 0 \\
& \text { So } R O C=+\infty \text {. }
\end{aligned}
$$

- Remainder frmula:

$$
\begin{aligned}
& \left|R_{N}(\operatorname{sen} x)_{(x)}\right|=\left|\frac{f_{(n+1)}^{(n)}}{(N+1)!} x^{N+1}\right|=\frac{|x|^{N+1}}{(N+1)!}\left|f_{(b)}^{(N+1)}\right| \\
& \& f_{(n)}^{(N+1)}= \pm \operatorname{sen} b \quad \pi \quad \pm \cos b \quad \text { In both cases }\left|f_{(b)}^{(N+1)}\right| \leqslant 1
\end{aligned}
$$

So $\left|R_{N}(\sin x)_{(x)}\right| \leq \frac{|x|^{N+1}}{(N+1)!} \underset{N \rightarrow \infty}{\longrightarrow} 0$ for each fixied x.
Gndusion: $\sin x$ is upresented by its Taylor series

$$
\operatorname{sen} x=\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n+1}}{(2 n+1)!}
$$

(3) Taylor series for $\cos (x)$: We take $x=0$ as the center.

We can follow the same argument as $\sin (x)$ rr use the fact that we can take derivative term-by-Term:

$$
\begin{aligned}
\cos x=(\sin x)^{\prime} & =\left(\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n+1}}{(2 n+1)!}\right)^{\prime}=\left(x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\frac{x^{7}}{7!}+\frac{x^{9}}{9!}-\cdots\right)^{\prime} \\
& =1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-\frac{x^{6}}{6!}+\frac{x^{8}}{8!}-\cdots=\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n}}{(2 n)!}
\end{aligned}
$$

with $\operatorname{ROC}=+\infty$ \& the series up resenting $\cos x$ is the Taylor sexes of $\cos x$, by uniqueness
Nate: Shies has my EVEN powers of x, again consistent with $\cos x$ being an cen function.
(4) Taylor shies ifs $e^{-x^{2}}$:

We can substitute z by $-x^{2}$ in the series for e^{z}

$$
e^{-x^{2}}=\sum_{n=0}^{\infty} \frac{\left(-x^{2}\right)^{n}}{n!}=\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n}}{n!} \text { has } R O C=+\infty \text { so it }
$$

must be the Taylor series for $e^{-x^{2}}$.
Application: We can un this To approximate $\int_{0}^{1} e^{-x^{2}} d x$ by integrating the series Term -b y-Term

$$
\begin{aligned}
& \int_{0}^{1} e^{-x^{2}} d x=\sum_{n=0}^{\infty}(-1)^{n} \int_{0}^{1} \frac{x^{2 n}}{n!} d x=\left.\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n+1}}{n!(2 n+1)}\right|_{0} ^{1} \\
& =\sum_{n=0}^{\infty} \frac{(-1)^{n}}{n!(2 n+1)}=\frac{1}{3}-\frac{1}{2!5}+\frac{1}{3!7}-\frac{1}{4!9}+\cdots
\end{aligned}
$$

Pick a partial sum as an approximate value fo $\int_{0}^{1} e^{-x^{2}} d x$
Q: What about other centers?
(5) Taylor series fr e^{x+1} :

- If the center is -1 , we can do the same substitution Trick:

$$
e^{x+1}=\sum_{n=0}^{\infty} \frac{(x+1)^{n}}{n!}
$$

. If the untur is 0 , we write $e^{x+1}=e^{x} e$
So $e^{x+1}=e e^{x}=e \sum_{n=0}^{\infty} \frac{x^{n}}{n!}=\sum_{n=0}^{\infty} e \frac{x^{n}}{n!}$
(6) Taylor shies fo $\sin x$ countered at $x=\frac{\pi}{2}$:

Sols 1: Confute $\sin \frac{\pi}{2}, \cos \frac{\pi}{2},-\sin \frac{\pi}{2},-\cos \frac{\pi}{2}, t_{0}^{11}$

- Taylor spies is $\sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2 n)!}\left(x-\frac{\pi}{2}\right)^{2 n}$
- Check $R O C=+\infty \&\left|R_{N}(\ln x)(x)\right| \underset{N \rightarrow \infty}{\longrightarrow} 0$ fixed any

Sole 2: Write $\sin x=\cos \left(x-\frac{\pi}{2}\right)$

so $\operatorname{sen} x=\cos (\underbrace{x-\frac{\pi}{2}}_{=z})=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2 n)!}\left(x-\frac{\pi}{2}\right)^{2 n}$
Taylor sics $1>\cos z$ at $z=0$
substitute $z=x-\frac{\pi}{2}$
§3. Proof of Lagrange Formula.
Pick $c=0$ as the center \& write $Q_{N}(x):=\frac{R_{N}(f)(x)}{(x-0)^{N+1}}$ fr $x \neq 0$ We want to show that $Q_{N}(x)=\frac{f^{(N+1)}(b)}{(N+1)!}$ fo some b in between $0 \& x$

To do so, we fix $x \neq 0$ \& define a nu e function $F(t)$ iss all t in between $0 \& x$.
We use $f_{(x)}=f_{(0)}+\frac{f^{\prime}(0)}{1!}(x-0)+\frac{f^{\prime \prime}(0)}{2!}(x-0)^{2}+\cdots+\frac{f_{(0)}^{(N)}}{N!}(x-0)^{N}+R_{N}(f)(x)$

$$
=f_{(0)}+\frac{f_{(0)}^{\prime}}{1!}(x-0)+\frac{f_{(0)}^{\prime \prime}}{2!}(x-0)^{2}+\cdots+\frac{f_{(0)}^{(N)}}{N!}(x-0)^{N}+Q_{N(x)}(x-0)^{N+1}
$$

We define $F(t)$ by replacing ency occurumce of 0 m the (RHS) by $\&$ taking the difference between $f(x)$ \& this experssin:

$$
\left.\left.F(t)=f(x)-f(\underline{t})-f^{\prime}(\underline{t})(x-\underline{\underline{t}})-\frac{f^{\prime \prime}(\underline{t})}{2!}(x-\underline{\underline{t}})^{2}-\cdots \cdot \frac{f^{(N)}(\underline{t})}{N!}(x-\underline{t})^{N}-Q_{N}(x) \right\rvert\, x-t\right)^{N \mid}
$$

Note. $F(0)=0$

$$
\text { - } F(x)=f(x)-f(x)=0
$$

- F is continuous $m[0, x]$ because $f_{(t)}, f^{\prime}(t), \ldots, f^{(N)}(t)$ an all contivulies \& $(x-t),(x-t)^{2}, \ldots,(x-t)^{N+1}$ ane as well.
- F is diffecentivalle on $(0, x)$ is the same masons.

By the Mean Value Thurum applied To F we can find b in $(0, x)$ with

$$
F^{\prime}(b)=0=\frac{F(x)-F(0)}{x-0}
$$

All that umains is to compute F^{\prime}. We look at small values of N \& Thy To est a patter:
$N=1 \quad F(t)=f(x)-f(t)-f^{\prime}(t)(x-t)-Q_{1}(x)(x-t)^{2}$

$$
\begin{aligned}
F^{\prime}(t) & =-f^{\prime}(t)-f^{\prime \prime}(t)(x-t)-f^{\prime}(t)(-1)-Q_{1}(x)^{2} \cdot(x-t)(-1) \\
& =\left(-f^{\prime \prime}(t)+Q_{1}(x)^{2}\right)(x-t)
\end{aligned}
$$

So $\quad 0=F^{\prime}(b)=\left(-f^{\prime \prime}(b)+2 Q_{1}(x)\right)(x-b)$ fris

$$
0=-f^{\prime \prime}(b)+2 Q_{1}(x) \quad m \quad Q_{1(x)} 0 \frac{f^{\prime \prime}(b)}{2}
$$

$N=2$

$$
\begin{aligned}
F(t)= & f(x)-f(t)-f^{\prime}(t)(x-t)-\frac{f^{\prime \prime}(t)}{2}(x-t)^{2}-Q_{2}(x)(x-t)^{3} \\
F^{\prime}(t)= & -f^{\prime}(t)-f^{\prime \prime}(t)(x-t)-f^{\prime}(t)(-1)-\frac{f^{\prime \prime \prime}(t)}{}(x-t)^{2} \\
& -\frac{f^{\prime \prime}(t)}{2} 2(x-t)(-1)-Q_{2}(x)^{3}(x-t)^{2}(-1) \\
= & \left(\frac{-f^{\prime \prime \prime}(t)}{2}+3 Q_{2}(x)\right)(x-t)^{2}
\end{aligned}
$$

So $0=F^{\prime}(b)=\left(-\frac{f^{(3)}}{2}(b)+3 Q_{2}(x)\right) \underbrace{(x-b)^{2}}_{\neq 0}$ frees

$$
0=\frac{-f^{(3)}}{2}(b)+3 Q_{2}(x) \quad m>Q_{2}(x)=\frac{f^{(3)}(b)}{3!}
$$

Fo general N, weill set similar cancellations that sire a simple frumela fo $F^{\prime}(t)$, namely:

$$
\begin{aligned}
F^{\prime}(t) & =-\frac{f^{(N+1)}(t)}{N!}(x-t)^{N}+(1+N) Q_{N}(x)(x-t)^{N}=\frac{\left(-f^{(N+1)}(t)+(N+1) Q_{N}(x)\right)(x-t)^{N}}{N!} \\
\text { So } 0 & \left.\left.=F^{\prime}(b)=\left(\frac{-f^{(N+1)}}{N!}+(N+1) Q_{N}(x)\right) \right\rvert\, x-b\right)^{N}, \text { frump } \\
0 & =\frac{-f_{(b+1)}^{N!}+(N+1) Q_{N}(x) \text { ns } \quad Q_{N(x)}=\frac{f^{(N+1)}}{(N+1)!}}{}
\end{aligned}
$$

Conclusion: $R_{N}(f)(x)=Q_{N(x)} x^{N+1}=\frac{f^{(N+1)}(16),}{(N+1)!} x^{N+1}$ ifs $x \neq 0$.

- The fromula for an arbitrary center c follows by changing variables. Writing $z=x-c$ the center c is x becomes the center of o z.

$$
f(x)=g(z+c) \quad R_{N}(g)(z)=\frac{g^{(N+1)}(\tilde{b})}{(N+1)!} z^{N+1} \quad \text { is } \tilde{5} \text { in between }
$$

Now $f^{(N+1)}(x)=g^{(N+1)}(z+c) \& R_{N}(f)(x)=R_{N}(g)(z)$, so we get $R_{N}(f)(x)=\frac{f^{(N+1)}(b)}{\left.(N+1)^{\prime}\right)}(x-c)^{N+1} \quad$ \& $b=5+c$ in between $c \& x$.

