Lecture LVIII: SH4(wit) Taylor series a laylot's frienda
Si Taylor vivo:
Ricall: The Taylor series of a function f contend at c (with c in the domain
HF) is
$$\sum_{n=0}^{\infty} \frac{f_{n}^{(n)}}{n!} (x-c)^n$$

We much for the differentiable up to any order at x=c.
Q: When is for equal to its Taylor series around c?
A NOT durage (manyle for last tecture)
Next approach: Truncate the Taylor series around c?
Minite the error in the approximation.
Write $S_{N}(x) = F_{(c)} + F'_{(c)} (x-c) + \frac{F''_{(c)}}{(c)} (x-c)^{2} + \dots + \frac{F'_{(c)}}{n!} (x-c)^{N}$
This is the trajer polynomial of degree $\leq N$ (=N if $f_{(c)}^{N}(x) \neq 0$)
Write $R_{N}(F)(x) = F_{(x)} - S_{N}(x)$
Partition: $\sum_{n=0}^{\infty} \frac{f_{(c)}^{(n)}}{n!} (x-c)^{n}$ with ROC = R>0 interpret to $h_{(x)}$ if,
and maly if $|R_{N}(F)(x)| = \frac{F_{(x)}}{n-2\infty} = f_{(x)} - \frac{F_{(x)}}{(n+2)} \times \frac{1}{n} - \frac{F_{(x)}}{n-2\infty}$
A The No that works for me x may not be large enough for another x
. This result is only marked for practical purposes. If we have a formula for $R_{1}(t)_{(x)}$
A why should we argued thei?
N=0: $R_{0}(F_{1}(x) = F_{(x)} - F_{(c)}) = \frac{f_{(1)}^{(N+1)}}{(N+1)!} (x-c)^{N+1}$ for b in televen
. N=0; $F_{0}(F_{1}(x) = F_{1}(x) - F_{1}(b) (x-c)$ by the Hear Value Then
. The proof for higher N will involve the Hear Value Then as well.
Another reason. Say $f_{(c)} = \frac{F_{1}^{(n)}}{F_{0}} (x-c)^{n}$ with ROC = R>0

Thus:
$$F_{(N)} - S_{N}|_{(N)} = \sum_{n=0}^{\infty} \frac{f_{(N)}^{(N)}}{n!} (x-c)^{n} - \sum_{n=0}^{\infty} \frac{f_{(N)}^{(N)}}{n!} (x-c)^{n}$$
 [IS B

$$= \sum_{n=0}^{\infty} \frac{f_{(N)}^{(N)}}{n!} (x-c)^{n+1} = \sum_{(N+1)}^{n} \frac{f_{(N+1)}^{(N+1)}}{(N+1)!} (x-c)^{n+1} = \sum_{n=0}^{\infty} \frac{f_{(N)}^{(N)}}{n!} (x-c)^{n+1} = \frac{f_{(N)}^{(N+1)}}{(N+1)!}$$
Lagrange Tranula uphates this fail by $\frac{f_{(N)}^{(N+1)}}{(N+1)!} (x-c)^{n+1} = \frac{f_{(N)}^{(N+1)}}{(N+1)!}$
Looks very similar to the 1st term of the tail.
So the term similar to the 1st term of the tail.
So the tangle genes is $\sum_{n=0}^{\infty} \frac{x^{n}}{n!}$
-We know by the Ratio Test that $Roc_{n}R>0$.
G: What is the Tayler veries of e^{n} around $x=0$?
 $F_{(N)} = e^{N} \mod f_{(0)} = 1$
 \vdots
 $f_{(N)}^{(N)} = e^{N} \mod f_{(0)}^{(N)} = 1$
 $f_{(N)}^{(N)} = e^{N} (x) = 1$
 $f_{(N)}^{(N)} = e^{N} (x) = 1$
 $Remainder (R_{N}(e^{N}) (x)) = (f_{(N+1)}^{(N+1)} \times x^{n+1}) = (e^{1} - x^{n+1}) = (h^{(N+1)})!$
 $rith b in between 0 a x.
 $If x>0$ $|e^{1}| = e^{1} < e^{N}$
 $If x>0$ $|e^{1}| = e^{1} < e^{0} < e^{N}$
 $If x>0$ $|e^{1}| = e^{1} < e^{0} < e^{N}$
 $If x>0$ $|e^{1}| = e^{1} < e^{0} < e^{N}$
 $If x = neord (R_{N}(e^{N})(x))$ independenting of b (We gett:
 $|R_{N}(e^{N}|_{(N)})| \le (Ix)|^{N-1} = 0$ (the coment $\frac{N}{n=0} = 0$).
 I_{n} conclustom : $R_{N}(e^{N}|_{(N)}) \xrightarrow{N=0} 0$ for every fixed $X = x0 = X$ is approximated by its Tayler veries, an we already kense.$

L58 (4) 3 Taylor series for cos(x): We take x=0 as the center. We can follow the same argument as sin(x) or use the fact that we can take derivatives term-by-term: $\omega x = (x_{n}x)' = \left(\sum_{n=0}^{\infty} (-1)^{n} \frac{x^{2n+1}}{(2n+1)!}\right)' = \left(x - \frac{x^{3}}{3!} + \frac{x^{5}}{5!} - \frac{x^{7}}{2!} + \frac{x^{9}}{9!} - \dots\right)'$ $= \frac{1}{2!} - \frac{x^2}{4!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \frac{x^8}{8!} - \dots = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n}}{(2n)!}$ with ROC = + 00 & the series representing cosx is the Taylor series of cos x, by unique mess Note: suis has my EVEN powers of x, again consistent with as x being an even function. (4) Taylor suits for e-x. We can substitute z by -x2 in the series for ez $e^{-\chi^{2}} = \sum_{n=0}^{\infty} \frac{(-\chi^{2})^{n}}{n!} = \sum_{n=0}^{\infty} \frac{(-1)^{n} \chi^{2n}}{n!}$ has ROC = + ao so it must be the Taylor series for e-x2. Application: We can un this to approximate $\int_{0}^{\infty} e^{-\chi^{2}} dx$ by integrating the series Term - by - Term $\int_{0}^{1} e^{-x^{2}} dx = \sum_{n=0}^{\infty} (-1)^{n} \int_{0}^{1} \frac{x^{2n}}{n!} dx = \sum_{n=0}^{\infty} (-1)^{n} \frac{x^{2n+1}}{n!} |_{0}^{1}$ $= \sum_{n=0}^{l} \frac{(-1)^n}{n! (2n+1)} = \frac{1}{3} - \frac{1}{2!5} + \frac{1}{3!7} - \frac{1}{4!9} + \cdots$ Pick a partial sum as an approximate value for $\int_{0}^{1} e^{-\chi^2} dx$ Q: What about other centers?

(c) Taylor series
$$\frac{1}{2^{n}} \frac{e^{X+1}}{e^{X+1}}$$
:
The fite cultur is -1 just can do the scale substitution track.
 $e^{X+1} = \sum_{n=0}^{\infty} \frac{(X+1)^{n}}{n!}$
If the cultur is 0, we write $e^{X+1} = e^{X}e$
So $e^{X+1} = e^{e^{X}} = e\sum_{n=0}^{\infty} \frac{x^{n}}{n!} = \sum_{n=0}^{\infty} e^{X^{n}}$
(d) Taylor series $\frac{1}{2^{n}} \sum_{n=0}^{\infty} \frac{x^{n}}{n!} = \sum_{n=0}^{\infty} \frac{e^{X}}{n!}$
 $\frac{1}{2^{n}} \sum_{n=0}^{\infty} \frac{1}{n!} \sum_{n=0}^{\infty} \frac{1}{2^{n}} \sum_{n=0$

To do so, wt fix
$$x \neq 0$$
 a differe a new function $T(t)$ for all
t in between $0 \ge x$.
We use $F(x) = F(0) + \frac{F'(0)}{1!} (x - 0) + \frac{F'(0)}{2!} (x - 0)^2 + \dots + \frac{F'(0)}{N!} (x - 0)^4 + F_N(F)_{(x)}$
 $= F(0) + \frac{F'(0)}{1!} (x - 0) + \frac{F'(0)}{2!} (x - 0)^2 + \dots + \frac{F'(0)}{N!} (x - 0)^4 + G_{N(x)} (x - 0)^{H_1}$
but differe $T(t)$ by suplacing array occurrence of 0 m the (RHS) by t \otimes
taking the difference between $F(x) \ge 4$ two expression:
 $T(t) = F(x) - F(t) - F'(t) (x - t) - \frac{F'(t)}{2!} (x - t)^4 - \dots - \frac{F'(t)}{N!} (x - t)^{N-Q_N(x)} |x - t|^{H_1}$
Note $\cdot F(0) = 0$
 $\cdot T(x) = F(x) - F(x) = 0$
 $\cdot T(x) = F(x) - F(x) = 0$
 $\cdot T(x) = F(x) - F(x) = 0$
 $\cdot T(x) = f(x) - (x - t)^2, \dots, (x - t)^{N+1}$ on an under
 $continuous = K(x - t), (x - t)^2, \dots, (x - t)^{N+1}$ on an under
 $R = (x - t), (x - t)^2, \dots, (x - t)^{N+1}$ on an under
 $F'(t) = 0 = \frac{T(x) - T(x)}{x - 0}$
All that remains is to compute T' . We look at small values $f(N = t)^{T}(t) = -F'(t) - F'(t) (x - t) - G_1(x) (x - t)^2$
 $T'(t) = -F'(t) - F'(t) (x - t) - F'(t) (-1) - G_1(x) (x - t)^2$
 $T'(t) = -F'(t) - F'(t) (x - t) - F'(t) (-1) - G_1(x) (x - t)^2$
 $0 = -F''(t) + 2G_1(x) - C(x) = \frac{T'(t)}{x}$

$$\frac{N \pm 2}{F(t)} = F(t) = F(t) - F'(t) (x+t) - F''_{(t)} (x+t)^{2} - Q_{2}(x) (x+t)^{3} - L^{3}(t)$$

$$F'(t) = -F'(t) - F''(t) (x-t) - F'(t) (x-t)^{2} - Q_{2}(x) (x+t)^{3}$$

$$= \left(-\frac{F'''}{(t)} + 3 Q_{2}(x) \right) (x-t)^{4}$$
So $0 = F'(b) = \left(-\frac{F^{(3)}}{2}(t) + 3 Q_{2}(x) \right) (x-t)^{4}$

$$\int_{t=0}^{t} \int_{t=0}^{t} \int_{t=0}^{t}$$