$$\frac{\left| \text{ecture } LX \right| \leq 8 14.7 \text{ Operations with power series} \\ \leq A.16 \text{ Divising of power series} \\ \hline SA.16 \text{ Divising Toyler trades of a function formula to the formula explicitly computing all $f^{(0)}(c)$. In particular we will use the following Tools:
1. Substitution
2. Substitution
3. Long Division
KEY: IF F is supresented by a power series $\sum_{n=0}^{\infty} a_n (x-c)^n$ was $x=c$, thus the series MUST be the Taylor series of F with center c. (Uniqueness Projects))
31. Substitution of an encirch in another $F(s(c))$:
EXAMPLE: $F(x) = \frac{1}{1-x^n} = 1+x+x^n+\cdots$ for $|x|<1 = RoCoff F$
QI Series for $\frac{1}{1-x^n}$?
A $g_{(x,y)} = x^n$ a assume $|x^n| < 1 (Rocoff F)$
Thus $F(x^n) = \frac{1}{1-x^n} = 1+(x^n) + |x^n|^2 + \cdots = \sum_{n=0}^{\infty} (x^n)^n = \sum_{n=0}^{\infty} x^{n}$
has $Roc = 1 (-1)T$)
Q2 Series for $\frac{x^n}{1-x^n}$?
A: $x^n \sum_{n=0}^{\infty} x^{1n} = \sum_{n=0}^{\infty} x^{1n+2}$ also has $Roc = 1$.
Gradueting: $O(h_{(x)}) = \frac{1}{1-x^n}$ have $h_{(x)}^{(n)} = \begin{cases} 0 \text{ if } n \text{ is not derivable by } n! \text{ otherwise} \\ n! \text{ otherwise} \end{cases}$$$

Taylor since for h with unter 0 is
$$\sum_{n=0}^{\infty} x^{4n} = \sum_{m=0}^{\infty} \frac{h(m)}{m!} x^m$$

if n # 4 k + 5 / 5 some k > 0 60[2] 2 $P(x) = \frac{x^5}{1-x^4}$ has $P_{10}^{(m)} = \begin{cases} 0 & \text{if } n \neq 0 \\ n! & \text{otherwise} \end{cases}$ Substitution Rule: Fix fix = 90+9, X+92 X + & 8(x) = 0+ b, x+b2 x2+ ... Then $f(g(x)) = q_0 + q_1(0 + b_1 x + b_2 x^2 + \cdots) + q_2(0 + b_1 x + b_2 x^2 + \cdots)^2 + \cdots$ a, (b, x2+26, b, X3+...) If I has ROC = R ≠ 0 a g has ROC = R' ≠ 0, then F(gix) has a prover series expansion whenever 1×1<R' & 1g(x)<R. These will happen if and may if Ibol < R. • IF S(0) =0, we'll be in Trouble (constant Term would be aota, botachet + achet + = asmic.) A We see that to write down the power venics for f(gw) we need to know how to multiply series (we'll need S(x)" for every N 20) \$2. Induct of Series, EXAMPLEI: $f_{(x)} = e^{x} = \sum_{n=0}^{\infty} \frac{x^{n}}{n!}$ Roc = R = + ∞ $S(x) = \sum_{m=0}^{\infty} \frac{(-1)^m x^{2m+1}}{(2m+1)!} \quad \text{Roc} = R = +\infty$ Then, f(x) S(x) is a prover veries with ROC = nim } ROC(F), ROC(g) }= +00 How? Distribute and collect coefficients for each power of x. $f(x) \delta(x) = \frac{x}{x} - \frac{x^{5}}{x^{5}} + \frac{x^{5}}{x^{5}} - \frac{x^{7}}{x^{7}} + \cdots$ 1.S(x) $x^{2} - \frac{x^{4}}{3!} + \frac{x^{6}}{5!} - \frac{x^{8}}{7!} + \cdots + x^{8} S(x)$ $\frac{\chi^{3}}{2} - \frac{\chi^{5}}{12} + \frac{\chi^{5}}{2 \cdot 5!} - \frac{\chi^{9}}{2 \cdot 7!} + \cdots \qquad \frac{\chi^{2}}{2} \& x \end{pmatrix}$ + $\frac{X^{1}}{3!} - \frac{X^{6}}{3!3!} + \frac{X^{8}}{3!5!} - \frac{X^{10}}{3!7!} + \cdots + \frac{X^{3}}{3!} S(X)$ ++

(adficient for
$$x = 1$$
 coefficient for $x^3 = -\frac{1}{3!} + \frac{1}{2} = -\frac{1}{3!}$
(adficient for $x^2 = 1$ coefficient for $x^4 = -\frac{1}{3!} + \frac{1}{3!} = 0$
In queuel, we'll get remy emplicated formulas.
EXAMPLE 2: $f(x) = ln(1-x) = -(x + \frac{x^3}{2!} + \frac{x^3}{3!} + \cdots)$ with ROC=1
 $\delta(x) = -\frac{1}{x-1} = -(1 + x + x^2 + x^3 + \cdots)$ with ROC=1
 $\delta(x) = \frac{1}{x-1} = -(1 + x + x^2 + x^3 + \cdots)$ with ROC=1
 $\delta(x) = \frac{1}{x-1} = -(1 + x + x^2 + x^3 + \cdots)$ with ROC=1
 $\delta(x) = \frac{1}{x-1} = -(1 + x + x^2 + x^3 + \cdots)$ with ROC=1
 $\delta(x) = \frac{1}{x-1} = -(1 + x + x^2 + x^3 + \cdots)$ with ROC=1
 $\delta(x) = \frac{1}{x-1} = -(1 + x + x^2 + x^3 + \cdots)$ with ROC=1
 $\delta(x) = \frac{1}{x-1} = -(1 + x + x^2 + x^3 + \cdots)$ with ROC=1
 $\delta(x) = \frac{1}{x-1} = -(1 + x + x^2 + x^3 + \cdots)$ with ROC=1
 $\delta(x) = \frac{1}{x-1} = -(1 + x + x^2 + x^3 + \cdots)$ with ROC=1
 $\delta(x) = \frac{1}{x-1} = -(1 + x + x^2 + x^3 + \cdots)$ with ROC=1
 $\delta(x) = \frac{1}{x-1} = -(1 + x + x^2 + x^3 + \cdots)$ with ROC=1
 $\delta(x) = \frac{1}{x-1} = -(1 + x + x^2 + x^3 + \cdots)$ with ROC=1
 $\delta(x) = \frac{1}{x-1} = -(1 + x + x^2 + x^3 + \cdots)$ with ROC=1
 $\delta(x) = \frac{1}{x-1} = -(1 + x + x^2 + x^3 + \cdots)$ with ROC=1
 $\delta(x) = \frac{1}{x-1} = -(1 + x + x^2 + x^3 + \cdots)$ with $\delta(x) = \frac{1}{x} + \frac{1$

So
$$F(x)g(x) = \sum_{n=0}^{\infty} \left(\sum_{k=0}^{n} a_k b_{n-k} \right) x^n$$
 is the serie energy
absoluting if $|x| < R = \min \{R_1, R_2\}$
G Why does then work?
A Take patial sums $\{r > F \neq g > multiply them together.$
So $r = a_0 + q_1 x + q_2 x^2 + \dots + q_n x^n$ no sub $n = \sum_{r=0}^{m} \sum_{k=0}^{r} a_k b_{pk} x^r$
 $t_n = b_0 + b_1 x + b_k x^2 + \dots + b_n x^n$ no sub $n = \sum_{r=0}^{m} \sum_{k=0}^{r} a_k b_{pk} x^r$
Reasonable subsolution $q_0 b_2$ $q_0 b_3$ \dots \bigcirc Sum the Ls gives So t.
 $a_1 b_0 = q_0 b_1$ $q_0 b_2$ $q_0 b_3$ \dots \bigcirc Sum the Ls gives So t.
 $a_2 b_0 = a_0 b_1$ $q_0 b_2$ $q_0 b_3$ \dots \bigcirc Sum the Ls gives So t.
 $a_2 b_0 = a_0 b_1$ $q_0 b_2$ $q_0 b_3$ \dots \bigcirc Sum the Ls gives (w)
 $x^n = a_0 b_0$ $a_0 b_1$ $q_0 b_2$ $q_0 b_3$ \dots \bigcirc Sum the spine so t.
 $a_1 b_0 = q_1 b_2$ $q_1 b_2$ $q_2 b_3$ \dots \bigcirc Sum the spine so t.
 $a_2 b_0 = a_2 b_1$ $a_3 b_2$ $q_3 b_3$ \dots \bigcirc Sum along outificagonal is
 $x^n = a_0 b_1 + a_3 b_2 + a_3 b_3$ \dots \bigcirc Sum along outificagonal is
 $x^n = a_0 b_0 = a_0 b_1$ $a_3 b_2 + a_3 b_3$ \dots \bigcirc By absolute envergence (in the service in May used and
 $x^n = \sum_{k=0}^{\infty} (\frac{1}{k} \sum_{q \neq k} \frac{1}{k+1} - \frac{1}{k} + \frac{x^n}{k} - \dots$ wit als consequent
 $x^n = \sum_{k=0}^{\infty} (\frac{1}{k+1} - \frac{1}{k+1} -$

\$3 Dirisim of power series

wx

Division Rule: Given
$$f(x) = a_0 + a_1 \times + a_2 \times^2 + \cdots = a g(x) = b_0 + b_1 \times + b_2 \times^2 + \cdots$$

with $g(0) = b_0 \neq 0$, we can determine $\frac{f(x)}{g(x)}$ bia long division. The result
will have a protive radius of correspond if $f \neq g$ do. (Need to arrid quotes of g!)
To keep things simple, we can always assume $b_0 = 1$.
EXAMPLE ten $(x) = \frac{g(x)}{g(x)}$ will have a power series expansion with $ROC = \frac{\pi}{g(x)}$
(even though ROC for series $d = \infty$)

Long division:

$$x + \frac{x^3}{3!} + \frac{x}{15}x^5 + \dots = tan(x)$$

$$(b \times x = (1 - \frac{x^2}{2} + \frac{x^4}{4!} - \dots)$$

$$(x) - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \dots$$

$$x - \frac{x^3}{2} + \frac{x^5}{4!} - \frac{x^7}{6!} + \dots$$

$$- \frac{(x^3)}{(x^3)} - \frac{1}{50}x^5 + \dots$$

$$- \frac{(x^3)}{(x^3)} + \frac{1}{(x^3)} + \frac$$

Since
$$I = \sum_{n=0}^{\infty} \left(\sum_{k=0}^{n} c_k b_{n-k} \right) X^n = b_0 c_0 + (b_0 c_1 + b_1 c_0) X + \cdots$$

 $I = b_0 C_0 \quad m_2 C_0 = \frac{1}{b_0}$ $O = b_0 C_1 + b_1 C_0 \quad m_2 C_1 = \frac{-b_1 C_0}{b_0} = \frac{-b_1}{b_0^2}$ so const. Term <u>ا</u>) ۵۵ x-Term $x^{2}-term \qquad 0 = b_{0}C_{2} + b_{1}C_{1} + b_{2}C_{0} \quad m > C_{2} = \frac{-b_{1}C_{1} - b_{2}C_{0}}{b_{0}} \quad known$ i fortimuing in this way, we get a formula for each cn in terms of b_{01}, b_{n-1} . 3. Show the series $\sum_{n=1}^{\infty} c_n x^n$ has a positive Rec How? Write $C_n = -\sum_{k=0}^{n-1} \frac{b_{n-k}C_k}{b_n}$ for all $n \ge 1$. To simplify, we assume $b_0 = 1$ (sthemaise, $\frac{1}{S(x)} = \frac{1}{b_0} \frac{1}{(1+\frac{b_1}{b_0}x+\cdots)}$) insect this & check Since $\sum_{n=0}^{\infty} b_n x^n$ has ROC=R>0. Jick ocre R e get that Z lbn/r converges. This forces [bn/r - 0 In particular, the sequence 316,15" {, is bounded a we can find K>1 (because bo=1) with $|b_n| \Gamma^n \leq K$ for all n. $|b_n| \leq \frac{\kappa}{\Gamma^n}$ Now use $C_n = -\sum_{k=0}^{\infty} b_{n-k} C_k$ for all $n \geq 1$. $c_0 = \frac{1}{1} = 1$ $\int |c_0| = 1 \leq \mathcal{K}$ $|C_1| = |b_1C_0| = |b_1| \leq \frac{\chi}{r}$ $|c_{2}| = |b_{1}c_{1} + b_{2}c_{0}| \leq |b_{1}c_{1}| + |b_{2}c_{0}| \leq \frac{K}{\Gamma} \frac{K}{\Gamma} + \frac{K}{\Gamma^{2}} K = 2\frac{K^{2}}{\Gamma^{2}}$ $|c_{3}| = |b_{1}c_{2} + b_{2}c_{1} + b_{3}c_{0}| \leq |b_{1}c_{2}| + |b_{2}c_{1}| + |b_{3}c_{0}| \leq \frac{K^{2}K^{2}}{\Gamma} + \frac{K}{\Gamma^{2}} + \frac{K+K^{3}}{\Gamma} = \frac{4K^{2}}{\Gamma^{3}}$ $=z^2 \frac{K^3}{r^3}$ In general : Ice I & Z^{l-1} K^l for all l = 1 $\begin{aligned} (\operatorname{huch} | c_{1+1} | = | b_{1}c_{1} + b_{2}c_{1} + \cdots + b_{1+1}c_{0} | \leq |b_{1}c_{1} | + |b_{2}c_{1-1} | + \cdots + |b_{1}c_{1} | + |b_{1}c_{1}c_{1} | + |b_$

$$= \frac{\chi^{l+1}}{\Gamma^{l+1}} \left(\frac{z^{l-1}+z^{l-2}+\cdots+z+l+l}{\Gamma^{l+1}} \right) = \frac{\chi^{l+1}}{\Gamma^{l+1}} \left(\frac{z^{l-1}+l}{z^{l-1}+l} + l \right)^{loofj}$$

= $z^{l} \frac{\chi^{l+1}}{\Gamma^{l+1}} = z^{(l+1)-1} \frac{\chi^{l+1}}{\Gamma^{l+1}}$

This confirms our prinula.

This gives:
$$\sum_{n=0}^{\infty} |c_n| |X|^{n} = 1 + \sum_{n=1}^{\infty} |c_n| |x|^{n} \leq 1 + \sum_{n=1}^{\infty} 2^{n-1} \frac{X^{n}}{r^{n}} |x|^{n}$$
$$= 1 + \frac{1}{2} \sum_{n=1}^{\infty} \left(\frac{2 \cdot X \cdot |x|}{r} \right)^{n}$$
and this suits converges if $\left| \frac{2 \cdot K \cdot |x|}{r} \right| < 1$ C semetric series
$$|x| < \frac{2r}{r}$$
 This is true for all $r < R$ meaning, we need $|x| < \frac{2R}{r}$ for absolute conseigned of $\sum_{n=0}^{\infty} c_n x^{n}$
$$(melusin: The radius of conseigned of $\sum_{n=0}^{\infty} c_n x^{n}$ is at least $\frac{R}{2\pi} > 0$.$$