Lecture LX: § 14.7 Operations with prow series § A. 16 Dinsisin of power series
GOAL: Use algebraic manipulations to compute Taylor series of a functin of with ROC $R \neq 0$ without explicitly imputing all $f^{(n)}(c)$. In particular we will use the following tool:

1. Substitution
2. Product
3. Long Division

KEY: If f is represented by a power series $\sum_{n=0}^{\infty} a_{n}(x-c)^{n}$ mar $x=c$, then this series MUST be the Taylor series of f with center C (Uniqueness Property)
31. Substitution of m series in another $f(g(x))$:

EXAMPLE : $f(x)=\frac{1}{1-x}=1+x+x^{2}+\cdots \quad$ fr $|x|<1=$ RoC of f
QI \sin in $f o \frac{1}{1-x^{4}}$?
A $g(x)=x^{4} \&$ assume $\left|x^{4}\right|<1$ (Roc of f)
Thun $f\left(x^{4}\right)=\frac{1}{1-x^{4}}=1+\left(x^{4}\right)+\left(x^{4}\right)^{2}+\cdots=\sum_{n=0}^{\infty}\left(x^{4}\right)^{n}=\sum_{n=0}^{\infty} x^{4 n}$ has $\operatorname{ROC}=1 \quad(=\sqrt[4]{1})$
Q2 Shin for $\frac{x^{5}}{1-x^{4}}$?
A. $x^{5} \sum_{n=0}^{\infty} x^{4 n}=\sum_{n=0}^{\infty} x^{4 n+5} \quad$ also has $R O C=1$.

Conclusion: : (1) $h(x)=\frac{1}{1-x^{4}}$ has $h^{(n)}(0)=\left\{\begin{array}{l}0 \text { if } n \text { is wot derisible by } 4 \\ n!\text { athenvise }\end{array}\right.$
Tangles sauces for h with under O is $\sum_{n=0}^{\infty} x^{4 n}=\sum_{m=0}^{\infty} \frac{h_{0}^{(m)}}{m!} x^{m}$
(2) $P(x)=\frac{x^{5}}{1-x^{4}}$ has $P^{(n)}(0)= \begin{cases}0 & \text { if } n \neq 4 k+5 \text { is some } k \geqslant 0(60(2) \\ x) & \text { sthencise }\end{cases}$

Substitution Rule: Fix $f_{(x)}=a_{0}+a_{1} x+a_{2} x^{2}+\cdots$ \&

$$
f(x)=0+b_{1} x+b_{2} x^{2}+\cdots
$$

Then $f(g(x))=a_{0}+a_{1}\left(0+b_{1} x+b_{2} x^{2}+\cdots\right)+\underbrace{a_{2}\left(0+b_{1} x+b_{2} x^{2}+\cdots\right)^{2}}_{a_{2}\left(b_{1}^{2} x^{2}+2 b_{1} b_{2} x^{3}+\cdots\right)}+\cdots$
If f has $R O C=R \neq 0$ a g has $R O C=R^{\prime} \neq 0$, then $F(g(x))$ has a prove series expansion whenever $|x|<R^{\prime}$ \& $|f(x)|<R$. Thes will happen if and mly if $\left|b_{0}\right|<R$.

- If $\rho(0) \neq 0$, well be in Trouble (constant tum would be $a_{0}+a_{1} b_{0}+a_{2} b_{2}^{2}+\cdots \cdot=a s s_{0}!$) 1) We see that to write down the power series for $f(g(x))$ we need to know how to multiply series (we'll need $\delta(x)^{n}$ fo every $n \geqslant 0$)
\$2. Product of Series:
EXAMPLE:

$$
\begin{array}{ll}
f(x)=e^{x}=\sum_{n=0}^{\infty} \frac{x^{n}}{n!} & R O C=R=+\infty \\
g(x)=\sum_{m=0}^{\infty} \frac{(-1)^{m} x^{2 m+1}}{(2 m+1)!} & R O C=R=+\infty
\end{array}
$$

Then, $f(x) S(x)$ is a preen series with $\operatorname{ROC}=\min 3 \operatorname{ROC}(f), \operatorname{ROC}(\rho)\}=+\infty$ How? Distribute and collect wefficients fo each power of x.

$$
\begin{aligned}
& f(x) \delta(x)=x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\frac{x^{7}}{7!}+\cdots \cdot \quad 1 \cdot \delta(x) \\
& +x^{2}-\frac{x^{4}}{3!}+\frac{x^{6}}{5!}-\frac{x^{8}}{7!}+\cdots \quad x \rho(x) \\
& +\quad \frac{x^{3}}{2}-\frac{x^{5}}{12}+\frac{x^{5}}{2 \cdot 5!}-\frac{x^{9}}{2 \cdot 7!}+\cdots \quad \frac{x^{2}}{2} g(x) \\
& +\quad \frac{x^{4}}{3!} \quad \frac{-x^{6}}{3!3!}+\frac{x^{8}}{3!5!}-\frac{x^{10}}{3!7!}+\cdots \frac{x^{3}}{3!} \delta(x)
\end{aligned}
$$

coefficient os $x=1$
coefficient of $x^{2}=1$
wefficicut of $x^{3}=\frac{-1}{3!}+\frac{1}{2}=\frac{1}{3}$
coefficient for $x^{4}=\frac{-1}{3!}+\frac{1}{3!}=0$

In several, we'll get very complicated frumbas.
EXAMPLE 2: $f(x)=\ln (1-x)=-\left(x+\frac{x^{2}}{2}+\frac{x^{3}}{3}+\cdots\right)$ with $R O C=1$

$$
\delta(x)=\frac{1}{x-1}=-\left(1+x+x^{2}+x^{3}+\cdots\right) \text { with ROC }=1
$$

So

$$
\begin{aligned}
f(x) g(x)=x+x^{2}+x^{3}+x^{4}+\cdots & =x \rho(x) \\
+\frac{x^{2}}{2}+\frac{x^{3}}{2}+\frac{x^{4}}{2}+\cdots & =\frac{x^{2}}{2} \rho(x) \\
+\quad \frac{x^{3}}{3}+\frac{x^{4}}{3}+\cdots & =\frac{x^{3}}{3} \rho(x) \\
\vdots & \vdots \\
& x+\left(1+\frac{1}{2}\right) x^{2}+\left(1+\frac{1}{2}+\frac{1}{3}\right) x^{3}+\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}\right) x^{4}+\cdots
\end{aligned}
$$

So $f(x) g(x)=\sum_{n=1}^{\infty}\left(1+\frac{1}{2}+\cdots+\frac{1}{n}\right) x^{n}$
Q: When can we un this technique?
A: We are rearranging a series (T_{0} collect the varies terms with the same X^{n}) so we need $f_{(x)} \& g_{(x)} T_{0}$ consenge absolutely.
Conclusion: It will work if $\mathrm{Fag}_{\mathrm{a}}$ an power series with the same cunt, $|x|<\min \{\operatorname{Roc}(G), \operatorname{Roc}(\rho)\}$
Product Rule: Set $f(x)=\sum_{n=0}^{\infty} a_{n} x^{n} \quad \& \quad g(x)=\sum_{n=0}^{\infty} b_{n} x^{n}$ with $R_{1}=\operatorname{ROC}(f)>0 \quad \& \quad R_{2}=\operatorname{ROC}(g)>0$. Then we get $f_{(x, y} g_{(x)}$ by
tem-by-tern multiplication a adding along columns:

absolutely if $|x|<R=\min \left\{R_{1}, R_{2}\right\}$.
Q Why does the work?
A Take partial sums fo \& 8 a multiply them Together.

$$
\begin{aligned}
& \quad s_{n}=a_{0}+a_{1} x+a_{2} x^{2}+\cdots+a_{n} x^{n} \\
& t_{n}=b_{0}+b_{1} x+b_{2} x^{2}+\cdots+b_{n} x^{n}
\end{aligned} \quad \leadsto s_{n} t_{n}=\sum_{p=0}^{2 n} \sum_{k=0}^{p} a_{k} b_{p-k} x^{p} \quad \begin{aligned}
& b_{k}=0 \text { if } k>n \\
& b_{p-k}=0 \text { if } p-k>n
\end{aligned}
$$

(1) Sum the Ls gives $S_{n} t_{n}$
(2) Sum along antidiagonal is the partial sum of the series (x) By absolute convergence, we can rearrange the series in ANY way and get the same sum.

$$
\begin{aligned}
& \text { Rows }=a_{i} x^{i} g(x) \\
& \text { Columns }=b_{j} x^{j} f(x)
\end{aligned}
$$

Way (1) $s_{n} t_{n} \underset{n \rightarrow \infty}{\longrightarrow} f(x) S(x)$
Way (2) series in (k).

1) We really need absolute cusceigena fo the to work:

EXAMPLE $f(x)=\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{n}}{\sqrt{n+1}}=1-\frac{x}{\sqrt{2}}+\frac{x^{2}}{\sqrt{3}}-\cdots$
Suns $p f^{2}(x)=\sum_{n=0}^{\infty}\left(\sum_{k=0}^{n} \frac{(-1)^{k}}{\sqrt{k+1}} \frac{(-1)^{n-k}}{\sqrt{n-k+1}}\right) x^{n}$

$$
\begin{aligned}
\sin s p f^{2}(x) & =\sum_{n=0}^{\infty}\left(\sum_{k=0}^{n} \frac{(-1)^{k}}{\sqrt{k+1}} \frac{(-1)^{n-k}}{\sqrt{n-k+1}}\right) x^{n} \\
& =\sum_{n=0}^{\infty}\left(\sum_{k=0}^{n} \frac{1}{\sqrt{k+1} \sqrt{n-k+1}}\right) x^{n}
\end{aligned}
$$

not abs ansengent at $x=1$, my unditimally contagut

This tries deranges $\operatorname{lo}_{f^{2}} x=1$ but ${ }^{2}(1)$ exists!
§3 Dirisin of power series
Disisin Rule: Given $f(x)=a_{0}+a_{1} x+a_{2} x^{2}+\ldots$ a $S(x)=b_{0}+b_{1} x+b_{2} x^{2}+\cdots$ with $f(0)=b_{0} \neq 0$, we can determine $\frac{f(x)}{g(x)}$ bia long dinisin. The result will hare a proitine radius of currengence if $f \& g$ do. (Need to astrid zusees of g !) To keep things simple, we can always assume $b_{0}=1$.
EXAMPLE $\tan (x)=\frac{\operatorname{sen} x}{\cos x}$ will have a pron series expansions with ROC $=\frac{\pi}{2}$ (essen though Roc fo $\operatorname{sen} x \& \cos x==^{2}$)
Long division:

$$
\cos x=(1)-\frac{x^{2}}{2}+\frac{x^{4}}{4!}-\cdots
$$

$$
x+\frac{x^{3}}{3}+\frac{2}{15} x^{5}+\cdots \cdot=\tan (x)
$$

$$
\text { (x) }-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\frac{x^{7}}{7!}+\cdots=\sin x
$$

$$
x-\frac{x^{3}}{2}+\frac{x^{5}}{4!}-\frac{x^{7}}{6!}+\cdots
$$

$$
\frac{-\frac{x^{3}}{3}-\frac{1}{30} x^{5}+\cdots}{\frac{x^{3}}{3}-\frac{x^{5}}{6}+\cdots} \frac{\frac{2}{15} x^{5}+\cdots}{}
$$

Alternative: Write the series is $\frac{1}{\cos x}$ a do $\operatorname{sen} x \cdot \frac{1}{\cos x}$ by Product Rule.
Key $=\cos x=1+$ limusinx so we can write $\frac{1}{\cos x}$ as a power series (Appendix A16)
Paofrition If $g(x)=\sum_{n=0}^{\infty} b_{n} x^{n}$ has $b_{0} \neq 0$ \& ROC>0, then $\frac{1}{s(x)}$ has a power series exparsin around 0 with ROC >0.
Why? 1. Propose $\frac{1}{g(x)}=\sum_{n=0}^{\infty} c_{n} x^{n}$
2. Write $\left(\sum_{n=0}^{\infty} c_{n} x^{n}\right) \cdot\left(\sum_{n=0}^{\infty} b_{n} x^{n}\right)=1$ \& find c_{n} by recursim since $\quad 1=\sum_{n=0}^{\infty}\left(\sum_{k=0}^{n} c_{k} b_{n-k}\right) x^{n}=b_{0} c_{0}+\left(b_{0} c_{1}+b_{1} c_{0}\right) x+\cdots$
so cost. Term $1=b_{0} c_{0} \quad m \quad c_{0}=\frac{1}{b_{0}}$
x-term $\quad 0=\frac{b_{0}}{b_{0} c_{1}}+b_{1} c_{0}$ mo $c_{1}=\frac{-b_{1} c_{0}}{b_{0}}=\frac{-b_{1}}{b_{0}^{2}}$
$\begin{gathered}x^{2} \text {-tum } \\ \vdots\end{gathered} \quad 0=b_{0} c_{2}+b_{1} c_{1}+b_{2} c_{0} m c_{2}=\frac{-b_{1} c_{1}-b_{2} c_{0}}{b_{0}}$ kuacon
CuTimuing in this way, we get a fromula for each c_{n} in terms of $b_{02} \ldots, b_{n-1}$.
3. Show the series $\sum_{n=0}^{\infty} c_{n} x^{n}$ has a positive $R x$

How? Write $c_{n}=-\sum_{k=0}^{n-1} \frac{b_{n-k} c_{k}}{b_{0}}$ fr all $n \geqslant 1$.
To simplify, we assume $b_{0}=1 \quad$ (athenvise, $\frac{1}{\rho(x)}=\frac{1}{b_{0}} \frac{1}{\underbrace{\left(1+\frac{b_{1}}{b_{0}} x+\cdots\right)}_{\text {inset this \& check }}}$)
Since $\sum_{n=0}^{\infty} b_{n} x^{n}$ has $R O C=R>0$, rich ocr< R \& get that $R O C>0$ $\sum_{n=0}^{\infty}\left|b_{n}\right| r^{n}$ converges. This frees $\left|b_{n}\right| r^{n} \underset{n \rightarrow \infty}{\longrightarrow 0}$

In particular, the sequence $\left\{\left|b_{n}\right| r^{n}\right\}_{n}$ is bounded Δ we can find $k \geqslant 1$ (because $b_{0}=1$) with $\left|b_{n}\right| r^{n} \leq K$ ifs all n.

$$
\left|b_{n}\right| \leqslant \frac{k}{r^{n}}
$$

Now use $c_{n}=-\sum_{k=0}^{\infty} b_{n-k} c_{k} r^{n}$ fo all $n \geqslant 1 . \quad, c_{0}=\frac{1}{1}=1$
So $\left|c_{0}\right|=1 \leq K$

$$
\begin{aligned}
& \left|c_{1}\right|=\left|b_{1} c_{0}\right|=\left|b_{1}\right| \leqslant \frac{K}{r} \\
& \left|c_{2}\right|=\left|b_{1} c_{1}+b_{2} c_{0}\right| \leqslant\left|b_{1} c_{1}\right|+\left|b_{2} c_{0}^{\prime \prime}\right| \leqslant \frac{k}{r} \frac{k}{r}+\frac{k}{r^{2}} k=2 \frac{k^{2}}{r^{2}} \\
& \left|c_{3}\right|=\left|b_{1} c_{2}+b_{2} c_{1}+b_{3} c_{0}\right| \leqslant\left|b_{1} c_{2}\right|+\left|b_{2} c_{1}\right|+\left|b_{3} c_{0}\right| \leqslant \frac{K_{2}}{r} \frac{k^{2}}{r^{2}}+\frac{k}{r^{2}} \frac{k}{r}+\frac{k^{3}}{r^{3}}=\frac{4 k^{3}}{r^{3}} \\
& \text { In seal : }\left|c_{l}\right| \leqslant z^{l-1} \frac{k^{l}}{r^{l}} \text { fo all } l \geqslant 1 \\
& \text { Chuck }\left|c_{l+1}\right|=\left|b_{1} c_{l}+b_{2} c_{l-1}+\ldots+b_{l+1} c_{0}\right| \leq\left|b_{1} c_{l}\right|+\left|b_{2} c_{l-1}\right|+\ldots+\left|b_{l} c_{1}\right|+\left|b_{l \mid}\right| \\
& \leqslant k / r 2^{l-1} \frac{k^{l} r^{l-1}}{r^{l}}+k / r^{2} 2^{l-2} \frac{k^{l-1} r^{l-1}}{}+\cdots+\frac{k / l-1}{} k / r+\frac{k^{l+1}}{r^{l+1}}
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{k^{l+1}}{r^{l+1}}\left(2^{l-1}+2^{l-2}+\cdots \cdot+2+1+1\right)=\frac{k^{l+1}}{r^{l+1}}\left(\frac{2^{l}-1}{2-1}+1\right)^{1600} \\
& =2^{l} \frac{k^{l+1}}{r^{l+1}}=2^{(l+1)-1} \frac{k^{l+1}}{r^{l+1}}
\end{aligned}
$$

This confirms on formula.
.This gives: $\sum_{n=0}^{\infty}\left|c_{n}\right||x|^{n}=1+\sum_{n=1}^{\infty}\left|c_{n}\right||x|^{n} \leqslant 1+\sum_{n=1}^{\infty} 2^{n-1} \frac{k^{n}}{r^{n}}|x|^{n}$

$$
=1+\frac{1}{2} \sum_{n=1}^{\infty}\left(\frac{2 k|x|}{r}\right)^{n}
$$

and this series consegges if $\left|\frac{2 k|x|}{\Gamma}\right|<1$
$|x|<\frac{2 r}{\pi}$ this is thee fo all $r<R$
meaning, we need $|x|<\frac{2 R}{K}$ if absolute currengena of $\sum_{n=0}^{\infty} C_{n} x^{n}$
Conclusion: The radius of curtergen a of $\sum_{n=0}^{\infty} c_{n} x^{n}$ is at least $\frac{R}{2 k}>0$.

