Lecture LXI: \$14.3 (cnt.): Differentiation & Integration of power series Appendix A15: Uniform consergence of power series

5. Duinties a Integrals of power series:
THEOREM: Fix
$$f_{(x)} = \sum_{n=0}^{\infty} a_n x^n$$
 with $ROC = R > 0$. Then:
(1) f is continuous on $(-R,R)$.
(2) f is differentiable term-by-term $a(-R,R) = f'_{(x)} = a_1 + 2a_2x + 3a_3x^2 + \dots = \sum_{n=1}^{\infty} na_n x^n$
(3) f is integrable term-by-term $a(-R,R) = \int_{-\infty}^{\infty} f_{(x)} dx = \sum_{n=0}^{\infty} \frac{a_n x^{n+1}}{n+1} + C$.
In particular, these power series all have notices of consergence R (the same!)
BWby is this true? Let's start with (2) $a(a)$, and show $ROC \ge R$ for both series.
. First attempt at (2): Assume we know the Roc for f is R by the Root Test,
so $\lim_{n\to\infty} |x|^n \sqrt{|a_n|} = |x| \lim_{n\to\infty}^{\infty} \sqrt{|a_n|} < 1$ gives convergence
 >1 first divergence

This says
$$R = \frac{1}{\lim_{n \to \infty} \sqrt{19n}}$$

(Aside: This assumption is very close to always being true
$$\frac{1}{R} = \lim_{n \to \infty} \sup_{n \to \infty} \int \frac{1}{R}$$

Then $\lim_{n \to \infty} \frac{1}{\sqrt{\ln q_n X^{n-1}}} = \lim_{n \to \infty} \frac{1}{\sqrt{n}} \frac{1}{\sqrt{\ln q_n}} \frac{1}{|X|^{\frac{n-1}{n}}} = \frac{1}{R}$
 $= n^{+1} \lim_{n \to \infty} \frac{1}{\sqrt{\ln q_n}} \frac{1}{\sqrt{n}} \frac{1}{\sqrt{n}} = \frac{1}{R}$
where in (2) $\frac{1}{R} \frac{1}{|X|}$
(4) By L'Hôpital Rule: $\ln \sqrt{\ln q_n} = \frac{1}{\ln} \ln n$ $\frac{1}{2}$ So $\lim_{n \to \infty} \frac{1}{\ln q_n} = 0$
Then $\lim_{n \to \infty} \sqrt{\ln q_n} = e^0 = 1$
Then $\lim_{n \to \infty} \sqrt{\ln q_n} = \frac{1}{R} \frac{1}{R} + \frac{1}{R} + \frac{1}{R} + \frac{1}{R} = 0$

· Second attempt at (2): We show the ROC for (2) is R without exploiting the Root Test for fix).

We know
$$\sum_{n=0}^{\infty} |a_n x^n|$$
 energy if $|x| < R$
Green x in $(-R, R)$, we can always find $E > 0$ satisfying $\overline{x} = |x| + E$ lies in $(0, R)$
 $\frac{1}{-R - |x|} = 0$ $|x| = R$ Then, the series $\sum_{n=0}^{\infty} |a_n| = x^n$ energy
(here we are uning $F(x)$ energy absolutely because $0 < \overline{x} < R$)
(here we are uning $F(x)$ energy absolutely because $0 < \overline{x} < R$)
(here we are uning $F(x)$ energy absolutely because $0 < \overline{x} < R$)
(here we are uning $F(x)$ energy absolutely if $|x| < R$, so the full train,
This will say $\sum_{n=0}^{\infty} |na_n x^{n-1}| \le \sum_{n=0}^{\infty} |a_n| = x^n$ so by emperson, the
tail $\sum_{n=0}^{\infty} na_n x^{n-1}$ will energy absolutely if $|x| < R$, so the full train,
 $|R| (2)$ will have the same property. This will say $ROC(\frac{1}{2} (2)$ is $\ge R$.
 $\frac{7 \cdot n!}{10! |x|^{n-1}} = \sqrt{n} |x|^{\frac{1}{2}}$ if $|x| < |x| + E$ for a large enorgh.
Thus $|x| = \frac{1}{(n-1)! |x|^{\frac{1}{2}}} = |x| + E$ for a large enorgh.
Thus $\frac{1}{(n+1)! |x|^{\frac{1}{2}}} = \sqrt{n} |x|^{\frac{1}{2}}$ if $|x| < |x| + E$
 $\frac{1}{(n+1)! |x|^{\frac{1}{2}}} = \sqrt{n} |x|^{\frac{1}{2}}$ if $|x| < |x| + E$
 $\frac{1}{(n+1)! |x|^{\frac{1}{2}}} = \sqrt{n} |x|^{\frac{1}{2}}$ if $|x| < |x| + E$
 $\frac{1}{(n+1)! |x|^{\frac{1}{2}}} = \sqrt{n} |x|^{\frac{1}{2}}$ is a large enorgh.
Thus $\frac{1}{(n+1)! |x|^{\frac{1}{2}}} = \sqrt{n} |x|^{\frac{1}{2}}$ is $|x| < |x| + E$ for a large enorgh.
 $\frac{1}{(n+1)! |x|^{\frac{1}{2}}} = \frac{1}{(n-1)! |x|^{\frac{1}{2}}} = \frac{1}{(n+1)! |x|^{\frac{1}{2}}}$

have
$$ROC \ge ROC(F')$$
 So, $R = ROC \ge ROC(F') \ge R$ gives $ROC(F') = R^{LUB}$
Similarly, if $F = (\int f(x_1 \ge x)'$ has $ROC \ge ROC(\int f_{1x_1} \ge x)$
This gives $R = RO((F) \ge ROC(\int f_{1x_1} \ge x) \ge R$, forcing $ROC(\int f_{1x_1} \ge x) = R$
Shown earlier
Key thing we are using: derivation x integration are "inverse operations" to each other.
As with (z) we still need to show the series $f(r)(3)$ gives $\int f_{1x_1} \ge x$. For

both of these statements we'll need the notion of absolute convergence.

§ z. Uniform convergence of power series
Recall:
$$f(x) = \sum_{n=0}^{\infty} a_n x^n = \sum_{n=0}^{N} a_n x^n + R_N(R)_{(x)}$$

 $= S_N(R)_{(x)} = N^{+4}$ partial sum

Puppintim: If ROC of F is R>0, then
$$S_N(F)_{(x)} \xrightarrow{N \to \infty} F(x)$$
 if and
my if $R_N(F)_{(x)} \xrightarrow{N \to \infty} 0$ for every fixed x

In other words, given E>0 we can find No=No(X,E) >0 so that IRN(F) <E

A No in principle depends both m E & X! We want to remore the dependence mx This is what yields to the notion of uniform convergence.

 $\frac{\partial cfinition:}{\ln r} = \text{Uniform convergence} = \text{No is independent of } x \text{ as long as } x \text{ lies in } [-R', R] for R'< R (No will defend m E & R' but will be the same fract <math>x \text{ in } [-R', R']$) Ilse precisely: for each 0 < R'< R fixed we have $R_N(x) \xrightarrow{N \to \infty} 0$ uniformly m [-R', R'], is No = No(E, R') is independent on x

 $\frac{\operatorname{Proposition:}}{\operatorname{Proposition:}} \operatorname{The series } h(x) = \sum_{k=0}^{\infty} a_{n} x^{n} \operatorname{converges uniform} \operatorname{ly} n [-R', R'] | r$ every $R' < R = \operatorname{Roc}(F)$ $\frac{\operatorname{Why}}{\operatorname{Sim} q} \operatorname{Ixl} \leq R' < R \quad \text{we get } | R_{N}(x) | = | \sum_{k=N+1}^{\infty} a_{k} x^{k} | \leq \sum_{k=N+1}^{\infty} |a_{k}| | |x|^{k}$

So
$$|R_{N}(R)_{(X)}| \leq \sum_{k=N+1}^{\infty} |a_{K}|(R')^{k} = tail d \sum_{n=0}^{\infty} |a_{n}|(R')^{k}$$
 [415]
Since $F(R')$ converges absolutely because or $R' < R'$, we can find $N_{0} = N_{0}(\epsilon, R')$
where $|\sum_{n=N_{0}+1}^{\infty} |a_{K}|(R')^{k}| < E$.
 $= 1$ limit of sain $-N_{0}^{1k}$ patial simul
Combining these 2 facts, we get $|R_{N}(F)|_{(N}| < E$ for $N \geq N_{0}(\epsilon, R')$.
Uniform convergence (s a very strong condition. It allows up to finish patring
out thuses.
Consequence 1 Priver series are continuous. (This was item (s) in the Theorem)
Why? Assume we are given x_{0} in $(-R, R)$. We want to show $\lim_{X\to X_{0}} F_{(N)} = F_{(N)}$
Pick any $E > 0$ conte F using N^{1k} patials and $F_{(X)} = S_{N}(X) + \frac{R_{N}(y)}{X + X_{0}}$ [4]
 $Q: What N should we pick?
Such $S_{1} > 0$ with $-R < x_{0} - S_{1} < X_{0} < x_{0} + S_{1} < R \le 1x_{0} S_{1} < R$
 $\frac{(-R < x_{0} + S_{1} < R \le -R < x_{0} - S_{1} < R > N_{0}(E, R'))}{-R}$ so $|x_{0} + S_{1}| < R \le 1x_{0} S_{1} < R$
 $Prive and y in $[-R_{1}/R']$ is every $N \ge N_{0}$.
 $Prive No in (x) = ware $F_{(X)} + S_{N_{0}}(x_{0}) + R_{N_{0}}(x_{0})$
 $IF x \in [-R', R']$, then $|R_{N_{0}}(x_{0})| < \frac{E}{3}$.
New $|F(x_{0} - F_{(X_{0})}] = |S_{N_{0}}(x)| + R_{N_{0}}(x_{0}) - (S_{N_{0}}(x_{0}) + R_{N_{0}}(x_{0})] =$$$$

$$= \left| \left[S_{NO}(x) - S_{NO}(x_{O}) \right] + \left[R_{NO}(x) - R_{NO}(x_{O}) \right] \right| \quad \text{(If)}$$

$$= \left| S_{NO}(x) - S_{NO}(x_{O}) \right| + \left| R_{NO}(x) \right| + \left| R_{NO}(x_{O}) \right| + \left| R_{NO}(x_$$

We show this by uniform consequence!
Africen E>0, we want to hind No. with
$$|\int_{0}^{\infty} R_{N}(x) dx| \leq E$$
 if N = No.
Pick $R' = \max\{1C\}, 1 \geq 1\} \leq R$ is chose No so that $|R_{N}(x)| \leq \frac{E}{d-C}$
 $Ex:$
 $R' = \max\{1C\}, 1 \geq 1\} \leq R$ is chose No so that $|R_{N}(x)| \leq \frac{E}{d-C}$
 $Ex:$
 $R' = \max\{1C\}, 1 \geq 1\} \leq R$ is chose No so that $|R_{N}(x)| \leq \frac{E}{d-C}$
 $Ex:$
 $R' = \max\{1C\}, 1 \geq 1\} \leq R$ is no for any x in $[-R', R']$.
Thus $|I| \int_{0}^{1} R_{N}(x) dx| \leq \int_{0}^{1} IR_{N}(x) I dx < \int_{0}^{1} \frac{E}{d-C} dx = \frac{E}{d-C} \times |I|^{2} = E$ if N = No
 $\lim_{n \to \infty} \lim_{n \to \infty} \lim_{n \to \infty} \lim_{n \to \infty} \lim_{m \to \infty} \lim_{n \to \infty} \lim_{m \to \infty} \lim_{n \to$