Lecture IX (2/1/16) §12.8: Lengths of curves

Last time: modelling trajectories of objects in space acting by the action of sum forces (e.g. gravity, wind, spins, etc., with 2 initial conditions \(\vec{r}(0), \vec{r}'(0) \))

We learned how to compute:

1. maximal height achieved & time to, at which it's achieved
2. time of flight & range travelled

Missing information: how far does the object travel along its flight path?

§1 Arc length

Fix \(\vec{r}(t) = \langle f(t), g(t), h(t) \rangle \) \(a \leq t \leq b \) a parametric curve

Def. The length of the parametric curve is given by

\[
L = \int_a^b \sqrt{\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2 + \left(\frac{dz}{dt}\right)^2} \, dt
\]

(Analog of speed = elapsed time formula)

Proof:
1. We subdivide the interval \([a, b]\) into \(n\) subintervals of length \(b-a\) \(n\), marked by \(n+1\) pts:
 \[a = t_0 < t_1 < \cdots < t_n = b\]
2. We draw the polygonal path joining \(\vec{r}(t_0), \vec{r}(t_1), \ldots, \vec{r}(t_n)\)
 approximating the curve.

 Each segment has length \(\left| \vec{r}(t_j) - \vec{r}(t_{j-1}) \right|\)

 But \(\left| \vec{r}(t_j) - \vec{r}(t_{j-1}) \right| = \left| \vec{r}'(s_j)(t_j - t_{j-1}) + \epsilon_j \right| \quad \text{for some point} \)

 \[t_{j-1} \leq s_j \leq t_j\]

 And \(\epsilon\) can be made very small as \(n\) grows. \& \[
 \left| t_j - t_{j-1} \right| = \frac{b-a}{n}
 \]
So \(|\vec{r}'(s_j) \cdot (b-c) + \epsilon| \approx |\vec{r}'(t_j) \cdot (b-c)| \) for \(n \to \infty \).

By definition, \(\int_a^b |\vec{r}'(t)| \, dt = \lim_{n \to \infty} \sum_{j=1}^n |\vec{r}'(t_j)| \cdot \epsilon_{j-1} \approx \lim_{n \to \infty} \sum_{j=1}^n |\vec{r}(t_j) - \vec{r}(t_{j-1})| = L. \)

where \(L = \text{length of the curve} \)

\(\text{(x)} \)

Example: \(\vec{r}(t) = <e^t, e^t \cos t, e^t \sin t> \) \(\alpha \leq t \leq \beta. \)

\(\vec{r}'(t) = <e^t, e^t \cos t + e^t \sin t, e^t \cos t - e^t \sin t> \)

So \(|\vec{r}'(t)| = \sqrt{(e^t)^2 + (e^t \cos t + e^t \sin t)^2 + (e^t \cos t - e^t \sin t)^2} \)

\(= e^t \sqrt{1 + \sin^2 t + 2 \sin t \cos t + \cos^2 t + \sin^2 t - 2 \sin t \cos t} \)

\(= e^t \sqrt{3} \)

So the length of the curve \(L = \int_0^\beta e^t \, dt = \sqrt{3} (e^\beta - 1). \)

Note: Often, it is very hard to find the antiderivative of \(|\vec{r}'(t)| \).

(eg, trajectories of planetary orbits \(\vec{r}(t) = \langle a \cos t, b \sin t \rangle \quad a \neq b. \))

In these cases, numerical approximation methods are used to compute it.

\[\text{§2. Arc length under changes of coordinates} \]

Recall \(\begin{cases} x = r \cos \theta \\ y = r \sin \theta \end{cases} \quad 0 \leq \theta \leq \beta. \)

We assume \(r = f(\theta) \)

(eg: \(r = \theta \) in the spiral)

So \(\vec{R}(\theta) = \langle f(\theta) \cos \theta, f(\theta) \sin \theta \rangle \quad \text{gives} \quad R'(\theta) = \langle f'(\theta) \cos \theta + f(\theta) \sin \theta, f'(\theta) \sin \theta + f(\theta) \cos \theta \rangle \)

\(\Rightarrow |R'(\theta)| = \sqrt{f'(\theta)^2 + f(\theta)^2} \)

Conclusion: \(L = \int \sqrt{f'(\theta)^2 + f(\theta)^2} \, d\theta. \)

Q: What about other reparameterizations?

How does \(L \) change? It shouldn't!

How to choose the parameterization that gives an easy way of calculating \(L \)?
Using this approach, we get several parameterizations of the same curve C.

Examples:

1. \(\textbf{r}_1(t) = \langle 1-t, t, t^2 \rangle \quad \text{over} \quad t \in [0,1] \)

2. \(u = e^t \quad 1 \leq u \leq e \) (\(g = \text{exponential is increasing function} \))

 Then: \(t = \ln u \)

 \(\textbf{r}_2(u) = \textbf{r}_1(\ln u) = \langle 1-\ln u, \ln u, (\ln u)^2 \rangle \quad 1 \leq u \leq e \)

3. \(u = \sin^2 t \quad 0 \leq u \leq \frac{\pi}{2} \) (\(t = \sin u \)) is increasing on \([0,1]\).

 \(\textbf{r}_3(u) = \textbf{r}_1(\sin u) = \langle 1-\sin u, \sin u, \sin^2 u \rangle \quad 0 \leq u \leq \frac{\pi}{2} \)

All 3 functions parameterize the same curve: a parabola in the plane \(y+x=1 \).

Most natural parameterization: by arc length!

Def: \(S(t) = \text{length of the curve from } a \text{ to } t \)

\[S(t) = \int_a^t |\textbf{r}'(u)| \, du \]

Note: \(S(t) \) is strictly increasing, so in principle we should be able to express \(t \) as a function of the length \(S \) (find the time \(t \) at which a certain length is achieved). Then \(t = t(S) \) and \(\textbf{r}(t(S)) = \textbf{r}(S) \), where \(S \) is the arc length parameter.

\[a \rightarrow t \rightarrow b \quad \text{with } \int_a^b \frac{1}{S(t)} \, dt = L = \text{length of the curve} \]
Example: \(\vec{r}(t) = \langle e^t, e^{t \sin t}, e^{t \cos t} \rangle \quad 0 \leq t \leq 4 \).

Earlier today: \(\vec{r}'(t) = \vec{r}'(t) + \frac{t}{\sqrt{3}} e^t \), so \(\vec{S}(t) = \int \vec{r}'(t) \, dt = \int \frac{t}{\sqrt{3}} e^t \, dt = \frac{t}{\sqrt{3}}(e^t - 1) \)

So to get \(t \) from \(s \): \(e^t = 1 + \frac{s}{\sqrt{3}} \Rightarrow \ln(1 + \frac{s}{\sqrt{3}}) \quad 0 \leq s \leq 7 \)

We conclude: \(\vec{r}_1(s) = \vec{r}_1(t(s)) \)

\[\begin{align*} &\vec{r}_1(s) = \langle \frac{(s + 1)}{\sqrt{3}}, \frac{(s + 1)}{\sqrt{3}} \sin(\ln(\frac{s + 1}{\sqrt{3}})), \frac{(s + 1)}{\sqrt{3}} \cos(\ln(\frac{s + 1}{\sqrt{3}})) \rangle \\ &\text{Note: } \vec{r}_1(s) \text{ is position vector of the point on the curve at a distance } s \text{ from } \vec{r}_1(0) = \langle 1, 0, 1 \rangle. \end{align*} \]

(2) \(\vec{r}(t) = \langle 2t, t^2, \frac{1}{3} t^3 \rangle \quad 0 \leq t \leq 1 \)

\[\vec{r}'(t) = \langle 2, 2t, t^2 \rangle \Rightarrow |\vec{r}'(t)| = \sqrt{4 + 4t^2 + t^4} = t^2 + 2 \]

So \(S(t) = \int_0^t (u^2 + 2) \, du = \frac{u^3 + 2u}{3} \bigg|_{u=0}^{u=t} = \frac{t^3}{3} + 2t \)

So \(L = S(1) = \frac{1}{3} + 2 = \frac{7}{3} \) \quad Here, we can't find a way to rewrite \(t \) as a function of \(s \).

(3) \(\vec{r}(t) = \langle 3 \sin t, 4t, 3 \cos t \rangle \quad 0 \leq t \leq 5 \)

\[\vec{r}'(t) = \langle 3 \cos t, 4, -3 \sin t \rangle \Rightarrow |\vec{r}'(t)| = \sqrt{9 + 16} = 5 \]

So \(S(t) = \int_0^t 5 \, dt = 5t \Rightarrow t = \frac{s}{5} \)

\[\vec{r}_1(s) = \vec{r}_1(\frac{s}{5}) = \langle 3 \sin(\frac{s}{5}), 4 \frac{s}{5}, 3 \cos(\frac{s}{5}) \rangle \quad 0 \leq s \leq 25 \]

Position vector of the point on the curve at a distance \(s \) from \(\vec{r}(0) = \vec{r}_1(0) \)

\[\vec{r}_1(5) = \langle 3 \sin(1), 4, 3 \cos(1) \rangle \]

Theorem: If \(|\vec{r}'(t)| = 1 \) for all \(a \leq t \leq b \), then \(S(t) = \int_a^t = t - a \)

and the parameter \(t \) corresponds to arc length.