§3. Cylinders and Traces:

Def: given a curve C in a plane, and a line l not in this plane, a **cylinder** is the surface of all lines parallel to l that pass through C.

Examples: Assume the plane is the xy-coordinate plane.

1. ![Diagram of a cylinder](image)
 - Surface is "ruled" by the line l along C.

2. ![Diagram of a standard cylinder](image)
 - **Def:** A Trace of a surface is the set of points at which the surface intersects a plane that is parallel to a coordinate plane. We call them xy-traces, yz-traces, and xz-traces, accordingly.

3. ![Examples of traces](image)
 - **Why?** Use any trace to sketch the surface. (Ex: above: elliptic paraboloid)

- We will use this to sketch quadratic surfaces.
- **Special traces: Intercepts** = traces at the standard coordinate planes (x=0, y=0, z=0, etc.)
5.2 Quadratic surfaces

A quadratic surface in 3-space is given by a general equation of degree 2:

\[A x^2 + B y^2 + C z^2 + D x y + E x z + F y z + G x + H y + I z + J = 0 \]

where \(A, B, \ldots, J \) are fixed constants and not all \(A, B, \ldots, F \) are zero.

To draw them: use 3 intercepts & at least 2 extra traces of each kind.

By changing coordinates, we get 6 standard examples (Table 13.1 [page 901]).

We do examples of all these surfaces (HW: One of each type). All traces will be conic sections (ellipses, parabolas or hyperbolas).

1. **ELLIPSOID**

 \[\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1 \quad a, b, c > 0. \]

 Example: \(\frac{x^2}{9} + \frac{y^2}{16} + \frac{z^2}{25} = 1 \)

 The role of all 3 variables is symmetric.

 Xy-Traces: \(z = 0 \)

 \[\frac{x^2}{9} + \frac{y^2}{16} = 1 \]

 Xz-Traces: \(y = 0 \)

 \[\frac{x^2}{9} + \frac{z^2}{25} = 1 \]

 Yz-Traces: \(x = 0 \)

 \[\frac{y^2}{16} + \frac{z^2}{25} = 1 \]

 The xy-traces are symmetric with respect to \(z = 0 \).

 \(z = \pm 1 \)

 \[\frac{x^2}{9} + \frac{y^2}{16} + \frac{1}{25} = 1 \Rightarrow \frac{x^2}{9} + \frac{y^2}{16} = \frac{1 - \frac{1}{25}}{25} \]

 \(z = \pm 5 \) we get a point \((0, 0, \pm 5) \)

 \[125 = 5 \]

 Conclusion:

2. **ELLIPITIC PARABOLOID**

 \[z = \frac{x^2 + y^2}{a^2 + b^2} \quad a, b > 0 \]

 Notice \(z \geq 0 \) and \(z = 0 \) if and only if \(x = y = 0 \).

 For every \(z > 0 \), the xy-traces are ellipses, that grow away from \((0, 0) \).
1. $x^2 + y^2 = z^2$ paraboloid, "slope $= \frac{1}{k}$".

2. In general, $x = \pm x_0$, $z = \frac{x_0^2}{a^2} + \frac{y^2}{b^2}$ paraboloid, shifted up by $\frac{x_0^2}{a^2}$ units.

3. Similar for y and z-traces.

4. Lowest paraboloid when $y = 0$ and shifted up by $\frac{y_0^2}{a^2}$.

5. Conclusion: $x^2 + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$.

6. Hyperboloid of One Sheet: $\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = 1$.

7. $x^2 + \frac{y^2}{16} - \frac{z^2}{25} = 1$.

8. Symmetric behavior on x and y, but different for z.

9. Notice that it is unbounded in the z-direction, and symmetric.

3. Hyperboloid of One Sheet: $\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = 1$.

Xz-Trace: $x = 0$:

$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$.

$y = 0$:

$\frac{y^2}{b^2} = 1$.

3. $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 + 1 = 2$ ellipse.

$y = 0$:

$\frac{x^2}{a^2} - \frac{y^2}{c^2} = 1$ hyperbola.

$\{(x = \pm a, y = 0)\}$ vertices.

$\{(x = \pm a, y = 0)\}$ asymptotes:

$y = \pm \frac{c}{a}x$.
Hyperboloid of Two Sheets

Equation:
\[-\frac{x^2}{a^2} - \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1 \quad a, b, c > 0 \]

Notice:
- Traces with \(z = \pm c \) and \(|z| < c \) are empty.
- \(xz\)-trace with \(z = \pm c \): \((a, 0, \pm c) \) is an ellipse.

\(xz\)-trace:
- When \(|z| > c \): \[-\frac{x^2}{a^2} + \frac{y^2}{b^2} > 0 \] is a hyperbola with asymptotes \(z = \pm \frac{3}{5} x \)

Conclusion:

\(xz\) and \(yz\)-traces show a similar behavior.

Conclusion:

- \(xz\)-trace: \[-\frac{x^2}{a^2} + \frac{y^2}{b^2} > 0 \] is a hyperbola with asymptotes \(z = \pm \frac{3}{5} x \)
(5) **ELLIPITIC CONE**

\[\frac{x^2}{a^2} + \frac{y^2}{b^2} = \frac{z^2}{c^2} \]

- \(x, y\)-trace are ellipses (\(c=0\) gives the pt \((0,0)\)).
- \(x, y\)-trace, \(y, z\)-trace have the same behavior.

- \(x, y\)-trace: \(y = 0\)
 \[\frac{x^2}{a^2} - \frac{y^2}{b^2} = \left(\frac{x}{a} \right) \left(\frac{y}{b} \right) = 0 \]
 \(\text{uninf. 2 lines.}\)

- \(y > 0\)
 \[\frac{x^2}{16} = \frac{z^2}{c^2} - \frac{x^2}{a^2} \]
 \(\text{hyperbolic with asymptotes } x = \pm \frac{3}{4} \)
 \(\text{as } |z| \text{ grows, the hyperbola moves away from the asymptotes.}\)

Conclusion:

![Elliptic Cone Diagram]

(6) **HYPERBOLIC PARABOLOID:**

\[\frac{x^2}{a^2} - \frac{y^2}{b^2} = z. \] (compare with (5))

- \(x, y\)-trace:
 \[z = \frac{x^2}{a^2} - \frac{y^2}{b^2} = z_0 \]
 \(z_0 = 0\)
 \(\text{get a unin. 2 lines, } x = \frac{3}{4} y.\)
 \(z_0 > 0\)
 \(\text{hyperbola moving away from 2 lines.}\)
 \(z_0 < 0\)
 \(\text{moving away from 2 lines.}\)

- \(x, y\)-trace:
 \(x = x_0\)
 \(\text{get a parabola with slope } \frac{1}{4} < 0.\)

- \(y, z\)-trace:
 \(y = y_0\)
 \(\text{with slope } \frac{1}{4} > 0\)
 \[z = \frac{x^2}{a^2} - \frac{y^2}{b^2} - \frac{y^2}{16} \]

Conclusion:

![Hyperbolic Paraboloid Diagram]