§1 Recall: Intervals in an interval are used to compute areas under curves.

We define them using Riemann sums:

\[
\text{Area under the curve and the } x\text{-axis } = \int_a^b f(x) \, dx
\]

(Here: \(f(x) \geq 0 \) so signed area is usual area)

We approximate this area by covering it with rectangles.

Step 1: Break the interval \([a,b]\) into \(n\) intervals of equal length.
(We will make \(\Delta x \) very small!) This is called a **regular partition**.

\[
\Delta x = \frac{b-a}{n}
\]

\(x_k \) are grid points \(k = 1, \ldots, n \)

\(x_k = a + k \Delta x \).

Step 2: Pick a point \(x_k^* \) in \([x_{k-1}, x_k]\) for every \(k = 1, \ldots, n \).

For every \(k \), we form the rectangle with base \([x_{k-1}, x_k]\)

\[ext{a height } = f(x_k^*) \text{ call it net}_k \]

\[\text{Area (net}_k \text{) } = f(x_k^*) \Delta x. \]

Proof: The Riemann sum associated with this data is

\[\text{sum of areas } = \sum_{k=1}^{n} f(x_k^*) \Delta x + \sum_{k=1}^{n} f(x_k^*) \Delta x + \ldots + \sum_{k=1}^{n} f(x_k^*) \Delta x. \]

\[= \sum_{k=1}^{n} f(x_k^*) \Delta x \]

We can pick the points \(x_k^* \) arbitrarily or following some rules:

1. **Pick left pt of every interval:** \(x_k^* = x_{k-1} \) \(\Rightarrow \) **left riemann sum**.
2. **Right pt** \(x_k^* = x_k \) \(\Rightarrow \) **right**.
3. **Midpoint** \(x_k^* = \frac{x_{k-1} + x_k}{2} \) \(\Rightarrow \) **midpoint**.

If \(x_k^* \) in \([x_{k-1}, x_k]\) is arbitrary, then we call the sum a **general riemann sum**.

Definition:

\[\int_a^b f(x) \, dx = \lim_{\Delta x \to 0} \sum_{k=1}^{n} f(x_k^*) \Delta x_k \]

\(\Delta x = \max \{ \Delta(x_k^*) : k = 1, \ldots, n \} \)

We say \(f \) is integrable whenever the (RHS) limit exists.

Theorem: If \(f \) continuous on \([a,b]\), then \(f \) is integrable on \([a,b]\).
§2 Double integrals: Fix \(R = [a, b] \times [c, d] \) as \(\{(x, y) \in \mathbb{R}^2 \mid a \leq x \leq b, c \leq y \leq d\} \) rectangle in \(\mathbb{R}^2 \) and \(f : f : R \to \mathbb{R} \) when \(f(x, y) \geq 0 \).

Goal: Find the Volume of the solid bounded by the graph of \(f \) and \(R \) (if \(f(x, y) \) has arbitrary sign, we get a signed volume).

- We want to mimic what we did for functions of one variable, so we need 2 steps:
 1. **Step 1:** Break the rectangle \(R \) into \(N \) rectangular subregions with sides parallel to the \(x \)-axis & \(y \)-axis, respectively. The lengths of the \(k^{th} \) rectangle are \(\Delta x_k \) & \(\Delta y_k \), respectively.

\[
\text{Area (rect}_k\text{)} = \Delta x_k \Delta y_k := \Delta A_k
\]

 - The rectangles form a partition of \(R \)
 - The grid need not be regular (\(\Delta x_k \) can be different for different \(k \)'s & the same for \(\Delta y_k \)'s)
 - We can order the rectangles (e.g., from left to right & bottom to top)

 2. **Step 2:** On the \(k^{th} \) rectangle, we pick any point \((x_k^*, y_k^*) \)

We build the \(k^{th} \) box with
- base = \(k^{th} \) rectangle
- height = \(f(x_k^*, y_k^*) \)

\[
\text{Volume (k^{th} box)} = f(x_k^*, y_k^*) \Delta A_k
\]

\[
\Sigma \left\{ \text{Volumes of all boxes} \right\} = \sum_{k=1}^{N} f(x_k^*, y_k^*) \Delta x_k \Delta y_k
\]

- This sum approximates the volume of the solid. The smaller the (diagonal of all rectangles), the better the approximation (so, as \(N \to \infty \) we should \(\Delta = \text{diag} \to 0 \) set small!

- Write \(\Delta = \max(\text{diag}) = \max \left\{ \sqrt{\Delta x_k^2 + \Delta y_k^2} \right\} \)

\[\int \int_R f(x, y) \, dA := \lim_{\Delta \to 0} \sum_{k=1}^{N} f(x_k^*, y_k^*) \Delta A_k \quad \text{(double integral of } f \text{ over } R) \]

\(f \) is integrable on \(R \) if the limit exists for all partitions of \(R \) and all choices of \((x_k^*, y_k^*) \) within those partitions.

Note: If \(f(x, y) \geq 0 \), the integral is the volume bounded by \(R \) and the graph of \(f \).
§3 Iterated integrals:

Q: How to compute \(\iint_R f(x,y) \, dA \)?

A: Use slicing method

- Slice along \(yz \)-planes
 \[A(x) = \int_c^d f(x,y) \, dy \]
 \[A(y) = \int_a^b f(x,y) \, dx \]

- Cross sectional area = \(A(x) \)
- Area of slice \(y = \) constant between \(c \) \& \(d \)

Idea: Volume is obtained by "summing" all the \(A(x) \)'s for \(a \leq x \leq b \)

Also,

\[A(y) \)'s \quad \text{for} \quad c \leq y \leq d \]

More precisely, summing means integration.

Theorem [Fubini]

Fix \(f = f(x,y) : R \rightarrow \mathbb{R} \) a continuous function

Then, \(\iint_R f(x,y) \, dA \) exists (\(f \) is integrable on \(R \)) and we can compute it in 2 different **iterated ways**:

\[
\iint_R f(x,y) \, dA = \int_a^b \left(\int_c^d f(x,y) \, dx \right) \, dy = \int_c^d \left(\int_a^b f(x,y) \, dx \right) \, dy
\]

Note: There are functions (not continuous!) when the 2 iterated integrals exist but the function is **NOT** integrable on \(R \).

- Often, one order of integration is easier than the other (Enough to do the easy one!)

Proof idea: The definition of \(\iint_R f(x,y) \, dA \) requires to use any partition, so we can make all \(\Delta y_k \) very small first.

Then, make \(\Delta x_k \) very small, and the limit gives \(\iint_R f(x,y) \, dA \).

\[\Delta A_k = \Delta x_k \Delta y_k \]
Examples:

1. Compute \(\iiint_R (x+y) \, dA \) where \(R = [0,3] \times [1,4] \).

 The graph is a plane.

 \[
 f(x,y) = x + y \quad \text{is \textit{an} \underline{cunt}, so we use Fubini!} \quad \text{Fund Thm of Calc} \quad \text{each} \quad A(x) = A(y)
 \]

 \[
 \iiint_R f(x,y) \, dA = \int_0^3 \int_0^4 (x+y) \, dy \, dx = \int_0^3 \left[\frac{xy}{2} + y^2 \right]_{y=1}^{y=4} \, dx
 \]

 \[
 = \int_0^3 \left(4x + 16 - (x+1) \right) \, dx = \int_0^3 3x + 15 \, dx = \frac{3}{2} x^2 + 15x \bigg|_{x=0}^{x=3} = \frac{27}{2} + 45 = \frac{117}{2}
 \]

 \[
 \iiint_R f(x,y) \, dA = \int_0^4 \int_0^3 (x+y) \, dx \, dy = \int_0^4 \left[\frac{x^2}{2} + 2xy \right]_{x=0}^{x=3} \, dy
 \]

 \[
 = \int_0^4 \left(\frac{9}{2} + 6y - 0 \right) \, dy = \left(\frac{9y}{2} + 3y^2 \right) \bigg|_{y=0}^{y=4} = \frac{36 + 48 - 9 + 3}{2} = \frac{117}{2}
 \]

2. Compute \(\iiint_R y \cos(xy) \, dA \) where \(R = [0,1] \times [0,\frac{\pi}{3}] \).

 \(f(x,y) = y \cos(xy) \) is \underline{continuous}, so we can use Fubini! [See if no order is easier than \underline{the other}]

 \[
 \int_0^{\pi/3} \int_0^1 y \cos(xy) \, dx \, dy = \int_0^{\pi/3} \int_0^1 \left(\frac{\sin(xy)}{y} \right) \, dx \, dy = \int_0^{\pi/3} \text{sin}y \, dy = \frac{\sin y}{y} \bigg|_0^{\pi/3} = \frac{\sqrt{3}}{2} - \frac{1}{2}
 \]

 The other order of integration is \underline{HARDER}!

 \[
 \int_0^1 \int_0^{\pi/3} y \cos(xy) \, dx \, dy = \int_0^1 \left(\frac{\sin xy}{y} - \frac{\sin xy}{x} \right) \, dy = \int_0^1 \left(\frac{\sin xy}{y} - \frac{\sin xy}{x} \right) \, dy
 \]

 \[
 = \left[\frac{\pi}{3} \sin \frac{\pi}{3} x - 0 \right] + \left(\frac{\cos \frac{\pi}{3} x}{x^2} - \frac{1}{x^2} \right)
 \]

 \[
 \iiint_R f(x,y) \, dA = \int_0^{\pi/3} \int_0^1 \left(\frac{\pi}{3} \sin \frac{\pi}{3} x + \cos \frac{\pi}{3} x - \frac{1}{x^2} \right) \, dx
 \]

 Integration by parts:

 \[
 \lim_{x \to 0} \frac{-\text{cos}(\pi/3 \cdot x) - 1}{x} = \frac{\text{d}x}{x} \left(-\frac{\pi}{3} \sin \frac{\pi}{3} x + \frac{\cos \frac{\pi}{3} x}{X^2} - 1 \right) + \frac{1}{X} \left(\frac{\pi}{3} \sin \frac{\pi}{3} x + \frac{1}{X} \right) \bigg|_{x=0}^{x=1} = -\frac{\pi}{3} \sin \frac{\pi}{3} x + \frac{1}{X} \bigg|_{x=0}^{x=1} = \frac{2-\sqrt{3}}{3} + \frac{2}{3} = \frac{4}{3}
 \]