Lecture XXI: 8.15.2 Double integrals on general regions

Last Time: Defined integrals on rectangular regions via Riemann sums:

\[
\Delta x_k, \Delta y_k = \Delta A_k
\]

mid of \(N \) rectangles \(A_{\text{area}}(\text{Rect}_k) = \Delta x_k \Delta y_k = \Delta A_k \)

Pick \((x^*_k, y^*_k) \) in \(\text{Rect}_k \) and \(\Delta = \max \left\{ \frac{\Delta x_k^2 + \Delta y_k^2}{k \in N} \right\} \)

Box: Base = \(\text{Rect}_k \) & Height = \(f(x^*_k, y^*_k) \)

approximates the solid bounded by \(R \) & the graph of \(f \)

Defined: \(\iint_R f(x,y) \, dA = \lim_{\Delta \to 0} \sum_{k=1}^N f(x^*_k, y^*_k) \Delta A_k \)

(Take over all partitions of \(R \) & choice of pts \((x^*_k, y^*_k) \))

Fubini's Theorem: If \(f \) is continuous on \(R \),

then \(f \) is integrable on \(R \) and we can compute it in 2 iterated ways:

\[
\iint_R f(x,y) \, dA = \left(\int_a^b \left(\int_c^d f(x,y) \, dx \right) \, dy \right) = \left(\int_c^d \left(\int_a^b f(x,y) \, dx \right) \, dy \right)
\]

\[
= A(y) =: \int_c^d f(x,y) \, dy = \text{Area under the curve } f(x,y) \text{ [y fixed]}
\]

Remarks: Some orders are easier than others,

Limits of integration are independent

Today: Use the same ideas to integrate on general regions.

\[f: \mathbb{R} \to \mathbb{R} \text{, } R \text{ region in } \mathbb{R}^2 \text{ closed & bounded } \]

A collection of \((\text{Rect}_k)_{k=1}^N \)

Approximate \(R \) by rectangles \(\text{inside} \) \(R \) with sides parallel to \(x \)-\(y \)-axes, of length \(\Delta x_k \& \Delta y_k \), max.

(\(\Delta \) the smaller the diagonal, the more rectangles, we can put!)

Pick a point \((x^*_k, y^*_k) \) in \(\text{Rect}_k \), \(A_{\text{area}}(\text{Rect}_k) = \Delta A_k \)

\(\Delta = \max \left\{ \frac{\Delta x_k^2 + \Delta y_k^2}{k \in N} \right\} \) max diagonal

Boxes: Base = \(\text{Rect}_k \) & Height = \(f(x^*_k, y^*_k) \)

Net Volume of the solid bounded by \(R \) & the graph of \(f \) equals

\[\iiint_R f(x,y,z) \, dV = \lim_{\Delta \to 0} \sum_{k=1}^N \left(\frac{f(x^*_k, y^*_k, z^*_k)}{\Delta A_k} \right) \]

& \(\text{vol} (\Box_k) \)
3.2 Iterated integrals: We will decide the order of integration of $f: \mathbb{R} \to \mathbb{R}$ based on the nature of R [Slicing method depends on R].

Type I

For Type I regions, the lower & upper bounds in the y-direction are graphs of 2 continuous functions $g(x)$ & $h(x)$, respectively. The slicing method yields:

$$A(x) = \int_{g(x)}^{h(x)} f(x,y) \, dy$$

Conclusion:
(Fubini for Type I)
$$\iint R f(x,y) \, dA = \int_a^b \left(\int_{g(x)}^{h(x)} f(x,y) \, dy \right) \, dx$$

Example: Compute $\iint R x^2 y \, dA$

Step 1: Draw R to see if it's Type I. (bounded by $g(x)=3x^2$ & $h(x)=16-x^2$)

Step 2: Find the intersection points of the 2 graphs:

$$3x^2 = 16-x^2 \implies 4x^2 = 16 \implies x = \pm 2$$

Step 3:
$$\iint R f(x,y) \, dA = \int_{-2}^{2} \left(\int_{-\sqrt{16-x^2}}^{\sqrt{16-x^2}} x^2 y \, dy \right) \, dx$$
\[
\mathcal{R} = \int_{-2}^{c} x^2 y^2 \, dx = \int_{y=-3x^2}^{y=16-x^2} x^2 (16-x^2-3x^2) \, dx \\
= \int_{-2}^{c} \frac{x^2}{2} \left(16 - 8x^4 - 32x^2\right) \, dx = \int_{-2}^{c} \left(16x^2 - 4x^6 - 16x^4\right) \, dx \\
= \frac{16}{c} \left[x^3 - \frac{4}{7} x^7 - \frac{16}{5} x^5 \right]_{x=-2}^{x=c} = \frac{69632}{210} = \frac{34816}{105}
\]

Type II

Region \(\mathcal{R} \) is bounded on the left and right by the graphs of two continuous functions \(x = g(y) \) and \(x = h(y) \), respectively, and \(c \leq y \leq d \).

Using y-slices:
\[
A(y) = \int g(y) h(y) \, dy
\]

Conclusion:
\[
\iint_{R} f(x,y) \, dA = \int_{c}^{d} \left(\int_{g(y)}^{h(y)} f(x,y) \, dx \right) \, dy
\]

For \textbf{Type II Regions}

Definition: If \(R \) is a general region, we cannot switch the order of integration.

If \(R \) is both \textbf{Type I and II}, we have 2 ways of computing but the limits of integration are different.

Example: \(R = \frac{y}{x} = x^2 \) or \(\frac{y}{x} = \frac{1}{2} \)

\[
\iint_{R} f(x,y) \, dA = \int_{0}^{1} \left(\int_{0}^{\frac{1}{2}} f(x,y) \, dy \right) \, dx
\]

Now examples: HW 7 & Recitation 8

§3 Decomposition of Regions

Write \(R = R_1 \cup R_2 \) (divide \(R \) into nonoverlapping regions).

Then:
\[
\iint_{R} f(x,y) \, dA = \iint_{R_1} f(x,y) \, dA + \iint_{R_2} f(x,y) \, dA
\]
We can use this to integrate over regions that are not of Type I or Type II but that we can decompose into regions of these types without overlapping.

Eg: \(R = \{(x, y) : -2 \leq x, y \leq 2, x^2 + y^2 \geq 1\} \)

\[\begin{align*}
\text{Type I} & \quad \text{Type II} \\
T: & \quad \left\{ \begin{array}{l}
y = g(x) = 0 \\
y = h(x) = x \\
1 \leq x \leq 2
\end{array} \right. & \left\{ \begin{array}{l}
y = g(x) = |1-x^2| \\
y = h(x) = 2 \\
0 \leq x \leq 1
\end{array} \right.
\end{align*} \]

\[\begin{align*}
T: & \quad \left\{ \begin{array}{l}
y = g(y) = 1 \\
x = h(y) = 2 \\
0 \leq y \leq 2
\end{array} \right.
\end{align*} \]

84 Regions between two surfaces

2 continuous functions \(f = f(x, y) : R \rightarrow \mathbb{R} \)

\[g = g(x, y) : R \rightarrow \mathbb{R} \]

where \(f(x, y) \geq g(x, y) \) for all \((x, y)\) in \(R \)

Then, the volume of the solid bounded by the graphs of \(f \) and \(g \) equals:

\[\text{Vol} = \iint_{R} (f(x, y) - g(x, y)) \, dA = \iint_{R} f(x, y) \, dA - \iint_{R} g(x, y) \, dA \]

Special case: \(g(x, y) = 0 \) \& \(f(x, y) = 1 \). Solid \(S \)

\[\text{Vol} = \iiint_{R} 1 \, dV \]

Prove: \(\text{Area} (R) = \text{Area} (R) \cdot 1 = \iint_{R} f(x, y) \, dA = \iint_{R} 1 \, dA \).