Practice Midterm 2 – Math 2153 (Section 10)

- 1. Give explicit examples of the following properties. You do NOT need to justify your answers.
 - (a) (2 points) Give an example of a function f(x, y) continuous on \mathbb{R}^2 such that there are infinitely many points $(a, b) \in \mathbb{R}^2$ such that f has a local maximum at (a, b).
 - (b) (2 points) Give an example of a continuous function $f = f(x, y) \colon \mathbb{R}^2 \to \mathbb{R}$ which is not differentiable at (0, 0) and has a saddle point at (0, 0).
 - (c) (2 points) Give an example of a function f(x, y) with domain \mathbb{R}^2 for which $f_x(0, 0)$ exists but $f_y(0, 0)$ does not exist.
 - (d) (2 points) Sketch level curves for a function f(x, y) with four local maximum and no local minima. Make sure to include enough level curves to illustrate these properties.
- 2. (5 points) A basin of circulating water is represented by the region $R = \{(x, y) : 0 \le x, y \le 1\}$. The velocity components of the water at position (x, y) in R are

the east-west velocity	u(x,y) = x(1+x)(-1+2y),
the north-south velocity	v(x, y) = y(y - 1)(-1 + 2x).

These velocity components produce some flow patterns in the basin. Find the rates of change of the water speed in the x- and y-directions.

- 3. (a) (2 points) Compute $D_{\mathbf{u}}(3x^3y y)$ where $\mathbf{u} = \left\langle \frac{-2}{\sqrt{5}}, \frac{-1}{\sqrt{5}} \right\rangle$.
 - (b) (2 points) Find the unit vector $\mathbf{u} = \langle u_1, u_2, u_3 \rangle$ pointing in the direction of maximum increase for the function $f(x, y, z) = xyz^2$ at the point (1, 1, 1).
 - (c) (2 points) Find the tangent plane to the graph of the function $f(x,y) = \frac{\ln(xy)}{e^y}$ at the point $(e, 1, e^{-1})$.
 - (d) (2 points) Compute $\frac{\partial z}{\partial x}$ at (x, y) = (1, 0) if (x, y, z) satisfy the implicit equation

$$xy + yz^2 + xz = 7.$$

- (e) (2 points) Estimate the change in $z = xy^2 x^2 + y$ when (x, y) changes from (1, 2) to (1.1, 1.9).
- (f) (2 points) Compute $\frac{\partial z}{\partial t}(\pi/4)$ where $z = x^2 3y^2 + 20$ and the point (x, y) lies in the curve $x = \cos t$, $y = \sin t$.
- 4. (8 points) Compute the local maximum, minimum values, saddle points and absolute maximum and minimum values for the function f(x, y) = x xy on the region in the plane bounded by the ellipse $y^2 + 9x^2 = 9$.
- 5. (5 points) Find the volume of the solid in the first octant bounded by the cylinder over the unit circle in the xy-plane and the planes z = y and z = 0.
- 6. (a) (5 points) Find the area of the region inside both the cardioid $r = 1 \cos \theta$ and the circle r = 1. (*Hint:* Draw a picture)
 - (b) (5 points) Compute $\iint_R 1 \, dA$ where R is the region bounded by the curves $y = 3x^2$ and $y = 16 x^2$.