MATH 2153 - Calculus III - Recitation 4

Prof. Cueto - The Ohio State University February 04, 2016

Note: Ignore all questions about torsion and TNB-frames. We will see these concepts on Friday.

1. (a) Find the equation of the curve $\mathbf{r}(t)$ satisfying:

	i. the tangent vector at time t equals $\langle \sqrt{2}t,1,-t^2\rangle;$ ii. the curve passes through $\langle 1,1,1\rangle$ at time $t=0.$
	(b) Compute the length of the curve between times $t=0$ and $t=6$.
	(c) Compute the curvature of $\mathbf{r}(t)$ at time t using the two formulas given in class, and find the time at which the trajectory is most curved (i.e., when $\kappa(t)$ is largest).
	(d) Compute the torsion of $\mathbf{r}(t)$ at time t , and find the time at which the trajectory is most twisted (i.e., when $\tau(t)$ is largest).
2.	Let $\mathbf{r}(t) = \langle 3\sin t, 4t, 3\cos t \rangle$ for $0 \le t \le 5$.
	(a) Find the position vector of the point at a distance 5 from $\mathbf{r}(0) = \langle 0, 0, 3 \rangle$.
	(b) Find the arc length reparameterization of the curve ${\bf r}.$
3.	Let $s(t)$ be the arc length function for the curve $\mathbf{r}(t) = \ln t \mathbf{i} + t^{-1} \mathbf{j} + t \mathbf{k}$. Compute $\frac{ds}{dt}$ at $t = 2$.
4.	(a) Show that the curvature and torsion of the helix $\mathbf{r}(t) = \langle \cos t, \sin t, 2t \rangle$ are constant. What are their values?
	(b) Write the scalar components of the trajectory, velocity and acceleration for the TNB-frame.
5.	Find the tangential and normal components of acceleration for the trajectory $\mathbf{r}(t) = t^3 \mathbf{i} + t^2 \mathbf{j}$.