Problem 3: We use the Fundamental Theorem of Calculus & the definition of antiderivative.

\[g(x) = f(x, b) = \int_{a}^{x} h(s) \, ds = \int_{b}^{t(x)} \dot{h}(s) \, ds = \frac{d}{dx} \int_{a}^{t(x)} h(s) \, ds = H(t(x))' \]

so \[g'(x) = H'(t(x)) \cdot t'(x) = h(bx) \cdot b. \]

\[\Rightarrow f_x(a, b) = g'(a) = h(ab) \cdot b. \]

By symmetry, \[g(y) = f(a, y) = \int_{a}^{y} h(s) \, ds = \int_{b}^{t(y)} \dot{h}(s) \, ds = H(t(y)) \]

where \(H \) is the antiderivative of \(h \).

so \[g'(y) = f_y(a, y) = H'(t(y)) \cdot t'(y) = h(t(y)) \cdot a = h(ay) \cdot a \]

\[\Rightarrow f_y(a, b) = g'(b) = h(ab) \cdot a. \]

Problem 2: Answer: No.

We differentiate \(f_y \) with respect to \(x \): \((f_y)_x = 1 \)

so \(f_{xy} = x + y^2 \) & hence \(f_{yx} = 1 \).

The mixed derivatives are continuous, and distinct, which contradicts the mixed partials. Thus, \(f \) cannot exist.

We conclude from this that \(f \) cannot exist.

Note: We can try to find \(f \) by integrating with respect to one of the variables. Partially:

\[f(x, y) = \int f_y \, dy + C \]

where \(C \) is a constant function in the \(y \) variable, so \(C = C(x) \) depends only on \(x \).

\[f(x, y) = \int (x-y) \, dy + C(x) = (x-y) y + C(x). \]

Then \(f_x = y + C'(x) \) and \((f_x)_y = 1 \neq x + y^2 \), so \(f \) cannot exist.
Problem 1: In this exercise, we want to use implicit differentiation.

By the statement, we know that \(g = g(x, y) \).

So \(g(x, y) = F(x, y; 3(x, y)) = 0 \).

We draw the tree dependence and note that:

- \(\frac{\partial x}{\partial y} = \frac{\partial y}{\partial x} = 0 \) because \(x, y \) are independent variables.
- \(\frac{\partial x}{\partial x} = \frac{\partial y}{\partial y} = 1 \).

By the Chain Rule, we sum the contribution of each branch:

\[
0 = 6_x = F_x(x, y, 3) \cdot 1 + F_y(x, y, 3) \cdot 0 + F_3(x, y, 3) \cdot 3x.
\]

\(6 \) is constant:

\[
0 = 6_y = F_x(x, y, 3) \cdot 0 + F_y(x, y, 3) \cdot 1 + F_3(x, y, 3) \cdot 3y.
\]

So, provided \(F_3(x, y, 3) \neq 0 \), we have:

\[
\frac{\partial^2 g}{\partial x \partial y}(x, y) = \frac{-F_x(x, y, 3)}{F_3(x, y, 3)}, \quad \frac{\partial^2 g}{\partial y \partial x}(x, y) = \frac{-F_y(x, y, 3)}{F_3(x, y, 3)}.
\]

Problem 4: (a) We start by drawing the regions of \(\mathbb{R}^2 \) where \(t \) has constant value \(=0 \) or \(=1 \).

To compute the limit, we parametrize the line:

- Vertical line \(\vec{r}(t) = <0, t> \)

\[
\lim_{(x, y) \to (0, t)} f(x, y) = \lim_{t \to 0} f(0, t) = \lim_{t \to 0} 1 = 1.
\]
All other lines $\mathbb{R}(t) = \langle t, mt \rangle$ ($y = mx$ is the defining equation)

\[
\lim_{(x,y) \to (0,0)} f(x,y) = \lim_{t \to 0} f(t, mt)
\]

To know the value of $f(t, mt)$, we have to determine in which region the point (t, mt) is:

- If $t < 0$, (t, mt) lies to the left of the y-axis & so \[f(t, mt) = 1, \quad \text{so} \quad \lim_{t \to 0^-} f(t, mt) = 1\]

- If $t > 0$, (t, mt) lies to the right of the y-axis. We need to check if it lies above or below the parabola when t is very small.

$m > 0$

\[
\frac{t^2}{mt} = \left(\frac{t}{m}, t_0\right)
\]

$m < 0$

We find the intersection t_0 of the line & the parabola. $(t_0^2, t_0) = (t, mt)$

\[
\begin{align*}
m &\geq 0 \\
mt = mt_0 &= t_0 \quad \Rightarrow \quad m = \frac{1}{t_0} \quad \Rightarrow \quad t_0 = \frac{1}{m} \\
\text{when } 0 < t < \frac{1}{m}, \text{ the line is below the parabola and so } & f(t, mt) = 1 \quad \lim_{t \to 0^+} 1
\end{align*}
\]

\[
\begin{align*}
m &< 0 \\
t_0 = x \quad \Rightarrow \quad -t_0 = mt = mt_0^2 \\
\text{so } t_0 &= \frac{1}{m} > 0. \quad \text{When, } 0 < t_0 < \frac{1}{m}, \text{ the line is above the parabola and so } & f(t, mt) = 1 \quad \lim_{t \to 0^+} 1
\end{align*}
\]

Conclusion: \[
\lim_{(x,y) \to (0,0)} f(x,y) = 1
\]

When (x, y) along any line through $(0,0)$
(b) To show \(f \) is discontinuous at \((0, 0)\) we must find a path along which the limit is not 1. The path has to be in the region where the function has value 0.

\[
\text{Eg: } x = \frac{1}{2} y^2
\]

\[
\lim_{(x,y) \to (0,0)} f(x, y) = 0.
\]

By the Path Test, the limit does not exist, so \(f \) is discontinuous at \((0, 0)\).

(c) We know if \(f \) is discontinuous, it cannot be differentiable. \(f \) is discontinuous at the lines \((x = 0)\) and at all points in the parabola \((x = y^2)\).

For the line \(x = 0 \):

\[
\lim_{x \to 0^-} f(x, y_0) = \lim_{x \to 0^+} f(x, y_0) = 0
\]

By the Path Test, the function is discontinuous at \((0, y_0)\).

At the point \((0, y_0)\), we know \(f \) is discontinuous by (b).

For the parabola, pick vertical lines \((x = x_0)\), \(x_0 > 0 \).

At the point \((x_0, \Gamma x_0)\):

\[
\lim_{y \to \Gamma x_0^-} f(x_0, y) = 1 = \lim_{y \to \Gamma x_0^-}
\]

\[
\lim_{y \to \Gamma x_0^+} f(x_0, y) = 0
\]

Again, by the path test, \(f \) is discontinuous at \((x_0, \Gamma x_0)\) and at \((x_0, -\Gamma x_0)\).
At all other pts, f is locally constant so it's differentiable ($\nabla f \neq \nabla \delta$, so h_x, h_y continuous).

2. $f = 0$ around the points P_1, P_2

(d) The curves are the line $x = 0$, parameterized as $\vec{r}(t) = \langle 0, t \rangle \text{ for } t \in \mathbb{R}$.

the parabola $x = y^2$, $\vec{r}(t) = \langle t^2, t \rangle$ for $t \in \mathbb{R}$

Problem 5: (a) We use the derivative rules:

(a) $h_x = \frac{1}{y^2}$ (y is constant)

$\frac{dy}{dx} = \frac{2x}{y^3}$ (x is constant)

(b) We draw the 4 curves $\frac{x}{y^2} = 3$ so $x = 30y^2$ where $3 = -\frac{1}{9}, -\frac{1}{9}, 0, 3$.

(c) At the level curve $x = 30y^2$, the gradient equals:

$\nabla f(x, y) = \langle \frac{1}{y^2}, \frac{-2x}{y^3} \rangle = \langle \frac{1}{y^2}, \frac{-2 \cdot 30y^2}{y^3} \rangle = \langle \frac{1}{y^2}, \frac{-2 \cdot 30}{y} \rangle$

Eq: $(1, 1)$ lies in $x = y^2 \implies \nabla f(1, 1) = \langle 1, 0 \rangle$

$\nabla f(0, 1) = \langle 0, 1 \rangle$

$\nabla f(-1, 1) = \langle 0, 1 \rangle$

$\nabla f(2, 1) = \langle 1, -4 \rangle$

To check that the gradient is perpendicular to the tangent direction, we
Parameterize the curve and check that $\nabla f(x(t), y(t)) \cdot \vec{r}'(t) = 0$.

- Level curve $z_0 = 0$: tangent direction = $<0, 1>$ because $\vec{r}(t) = <0, t>$.
 \[\nabla f(0, y) = <\frac{1}{y^2}, 0> \perp <0, 1> \checkmark \]

- Level curve $z_0 = 1$: $\vec{r}(t) = <t^2, t> \Rightarrow \vec{r}'(t) = <2t, 1>$.
 \[\nabla f(t^2, t) = <\frac{1}{t^2}, -\frac{2}{t^2}> \perp <2t, 1> \checkmark \]

- Level curve $z_0 = -1$: $\vec{r}(t) = <-t^2, t> \Rightarrow \vec{r}'(t) = <-2t, 1>$.
 \[\nabla f(-t^2, t) = <\frac{1}{t^2}, \frac{2}{t^2}> \perp <-2t, 1> \checkmark \]

- Level curve $z_0 = 2$: $\vec{r}(t) = <2t^2, t> \Rightarrow \vec{r}'(t) = <4t, 1>$.
 \[\nabla f(2t^2, t) = <\frac{1}{t^2}, -\frac{4}{t^2}> \perp <4t, 1> \checkmark \]

Problem 6: We start by drawing the surface. Elliptic paraboloid.

(a) We start by computing the gradient:

\[\nabla f(x, y) = <f_x(x, y), f_y(x, y)> \]
\[= <2x, 6y> \Rightarrow \nabla f(3, 4) = <6, 24> \]
\[D_u f(3, 4) = <6, 24> \cdot \vec{u} = \frac{6 + 24}{12} = \frac{30}{12} > 0 \]
\[D_{\vec{w}} f(3, 4) = <6, 24> \cdot \vec{w} = 3 - 12\sqrt{3} < 0 \]

Since $D_u f(3, 4) > 0$, the function f is increasing when moving in the direction of \vec{u}.

Since $D_{\vec{w}} f(3, 4) < 0$, the function f is decreasing when moving in the direction of \vec{w}.

(b) We write $\vec{r}(x) = <x, y(x)>$ and $\vec{r}(3) = <3, 4>$ so $y(3) = 4$.
The path \(r_{th} \) will have steepest descent if at every point \((x,y)\) we move in the direction
\[
\frac{-\nabla f(x,y)}{1/\nabla f(x,y)} \]
This direction is also given by the tangent direction \(-\vec{t}(t)\), which means that
\[
\frac{y'(x)}{x} = \frac{fy(x,y)}{fx(x,y)} = \frac{6y}{2x} \quad (the \ slope \ is \ the \ same!)
\]
So the function \(y = y(x) \) we are after satisfies:
\[
\begin{align*}
y'(x) &= \frac{3y}{x} \\
y(3) &= 4 \quad \text{(starting pt: } (3,4) \text{)}
\end{align*}
\]
This defines a differential equation, which we can solve.

\[
\begin{align*}
(\ln y)' &= \frac{y'(x)}{y} = \frac{3}{x} & \Rightarrow \text{ integrate } \ln y = \int \frac{3}{x} \, dx + C \\
&= 3 \ln x + C
\end{align*}
\]
We exponentiate \(y = e^{3 \ln x + C} = (e^C) x^3 \) \(\quad \text{constant} = a \)

Use use the initial condition to find \(a \).
\[
y = y(3) = a \cdot 27 \quad \Rightarrow \quad a = \frac{4}{27}
\]
is the desired curve.

What's the end point? \(y(0) = 0 \). \(\Rightarrow \) The end point is the vertex of the paraboloid.

Problem 7: The water determining stream lines with constant speed.

By definition \(S(x,y) = \sqrt{u^2(x,y) + v^2(x,y)} \) at position \((x,y)\),

We write \(S = S(u(x,y), v(x,y)) \) & use the chain rule.
\[
\begin{align*}
\frac{ds}{dx} &= Su \cdot \frac{\partial u}{\partial x} + Sv \cdot \frac{\partial v}{\partial x} \\
\frac{ds}{dy} &= Su \cdot \frac{\partial u}{\partial y} + Sv \cdot \frac{\partial v}{\partial y}
\end{align*}
\]
To find s_u & s_v, it's easier to use $s^2(u,v) = u^2 + v^2$
we do implicit differentiation with respect to u & v, use the chain rule
\[
\begin{align*}
\frac{d}{du} (s^2 = u^2 + v^2) & \quad \text{gives} \quad 2s \cdot s_u = 2u \implies s_u = \frac{u}{s} \\
\frac{d}{dv} (s^2 = u^2 + v^2) & \quad \text{gives} \quad 2s \cdot s_v = 2v \implies s_v = \frac{v}{s}
\end{align*}
\]
provided $s \neq 0$. (need is not $=0$).

we replace these values back in x
\[
\frac{ds}{dx} = \frac{u}{s} \frac{du}{dx} + \frac{v}{s} \frac{dv}{dx} \quad \text{&} \quad \frac{ds}{dy} = \frac{u}{s} \frac{du}{dy} + \frac{v}{s} \frac{dv}{dy}
\]

In our case:
\[
\begin{align*}
\frac{du}{dx} &= (1-2y)(1-2x) \\
\frac{du}{dy} &= -2x(1-x)
\end{align*}
\]
\[
\begin{align*}
\frac{dv}{dx} &= -2y(y-1) \\
\frac{dv}{dy} &= (2y-1)(1-2x)
\end{align*}
\]
\[
s = \sqrt{x^2(1-x)^2(1-2y)^2 + y^2(y-1)^2(1-2x)^2}
\]

Conclusion:
\[
\frac{ds}{dx} = \frac{x(1-x)(1-2y)^2(1-2x) - 2y(y-1)^2(1-2x)}{\sqrt{x^2(1-x)^2(1-2y)^2 + y^2(y-1)^2(1-2x)^2}}
\]
\[
\frac{ds}{dy} = \frac{-2x^2(1-x)^2(1-2y) + y(y-1)(1-2x)(2y-1)}{\sqrt{x^2(1-x)^2(1-2y)^2 + y^2(y-1)^2(1-2x)^2}}
\]