MATH 2153 - Calculus III – Recitation 12

Prof. Cueto - The Ohio State University

April 21, 2016

- 1. Horizontal channel flow. Consider the velocity vector field $\mathbf{v}_{(x,y,z)} = \langle 0, 1 x^2, 0 \rangle$ for |x|, |z| < 1, which represents a horizontal flow in the *y*-direction. Suppose you place two paddle wheels at the points $P = (\frac{1}{2}, 0, 0)$ and $Q = (-\frac{1}{2}, 0, 0)$, respectively.
 - (a) In which of the coordinate directions should the axes of the wheels point in order for the wheel to spin? In which directions do they spin?
 - (b) Compute the graph of the curl of \mathbf{v} and provide an interpretation of your findings in (a).

2. Evaluate $\iint_{S} (\nabla \times \mathbf{F}) \bullet \vec{n} \, dS$, where $\mathbf{F}_{(x,y,z)} = \langle -xz, yz, xye^{z} \rangle$, the region S in \mathbb{R}^{3} is the cap of the paraboloid $z = 5 - x^{2} - y^{2}$ above the plane z = 3 and \vec{n} is the unit normal vector to S pointing upwards. (*Hint:* Draw a picture of S.)

3. Flux across a sphere. Consider the radial vector field $\mathbf{F} = \langle x, y, z \rangle$ and let S be the sphere of radius a centered at the origin. Compute the outward flux of \mathbf{F} across S. (*Hint:* Use the symmetry of the sphere and parameterize either one of the hemispheres)

^{4.} Find the net outward flux of a general rotational vector field $\mathbf{F}_{(x,y,z)} = \vec{a} \times \langle x, y, z \rangle$ across any smooth closed surface, where $\vec{a} \in \mathbb{R}^3$ is a fixed non-zero vector.

- 5. Compound surface and boundary. Begin with the paraboloid $z = x^2 + y^2$, for $0 \le z \le 4$, and slice it with the plane y = 0. Let S be the surface that remains for $y \ge 0$, including the planar surface in the xz-plane). Let C be the semicircle and line segment that bounds the cap of S in the plane z = 4, with counterclockwise orientation. Let $\mathbf{F} = \langle 2z + y, 2x + z, 2y + x \rangle$.
 - (a) Describe the direction of the vectors normal to the surface that are consistent with the orientation of C.
 - (b) Evaluate $\iint_{S} (\nabla \times \mathbf{F}) \bullet \vec{n} \, dS$, for \vec{n} the unit outward normal to S from (a).
 - (c) Evaluate $\oint_C \mathbf{F} \bullet d\mathbf{r}$ using (b).
 - (d) Can you find another surface bounded by C? Would that surface simplify the calculations in (c)?

- 6. Tilted disks Let S be the disk enclosed by the curve C with parameterization $\mathbf{r}(t) = \langle \cos \varphi \cos t, \sin t, \sin \varphi \cos t \rangle$ for $0 \le t \le 2\pi$, where φ is a *fixed angle*.
 - (a) Compute the area of S and the length of C.
 - (b) What is the circulation of C of the vector field $\mathbf{F} = \langle -y, x, 0 \rangle$ as a function of the angle φ ? What values of φ maximize the circulation?
 - (c) What is the circulation of C of the vector field $\mathbf{F} = \langle -y, -z, x \rangle$ as a function of the angle φ ? What values of φ maximize the circulation?