Lecture XXI: § $5.1-5.2$ Vector Spaces
§1. Intivation:
S\& for: instructed \mathbb{R}^{n} \& vector subspaces of \mathbb{R}^{n} :
(1) $N=\mathbb{R}^{n}$
(2) $\mathbb{N}=\{\mathbb{1}\}$
(3) $\mathbb{N}=S_{p}\left(\vec{v}_{1}, \ldots, \vec{v}_{r}\right)$
$(4)=\mathbb{N}=\underset{N}{\mathcal{N}}(A)=\left\{\left[\begin{array}{l}x_{1} \\ \dot{x}_{n}\end{array}\right]: A\left[\begin{array}{l}x_{1} \\ \dot{x}_{n}\end{array}\right]=\left[\begin{array}{l}0 \\ \vdots \\ 0\end{array}\right]\right.$ in $\left.\mathbb{R}^{m}\right\}$ Nulity Space
(5) $\mathbb{N}=\operatorname{Range}(A)=$ Column $\operatorname{Space}(A)=\underset{p}{\operatorname{Subspace~of~}\left(a_{1}, \cdots, \mathbb{R}_{n}\right) .} \quad A=\underset{m \times n}{\left[\begin{array}{l}a_{1} \cdots a_{n}\end{array}\right]}$
(6) $\mathbb{V}=\operatorname{Row} \operatorname{Space}(A)=$ Column Space $\left(A^{\top}\right)$ Subspace of \mathbb{R}^{n}.

Goon features: CD in \mathbb{V}

- We can add two rectors $f\left(N\right.$ (using +in \mathbb{R}^{N}) armainiulV
- scaler multiply a vector in \mathbb{V} with any scalar (using the usual scaler product operation in \mathbb{R}^{n}) \& remaci in \mathbb{V}.
- 4 scalar melt. have nice algebraic properties (inherited from We see these poopertes in other settings: \mathbb{R}^{n})

Example 1: A set of solutions to the differential equation $y_{(x,}^{\prime \prime}-y_{(x)}=0$

- Solution 1: $y(x)=e^{x}$
- Satin : $y(x)=-e^{-x}$
- Any lima ambination of these $y(x)=c_{1} e^{x}+c_{2}\left(-e^{-x}\right)$ is also a solution.

$$
\begin{aligned}
& y^{\prime}(x)=c_{1} e^{x}+c_{2} e^{-x} \\
& y^{\prime \prime}(x)=c_{1} e^{x}+c_{2}\left(-e^{-x}\right)=y(x)
\end{aligned}
$$

- Claim: These 2 solutions are "linearly indyenduut":
$0=c_{1} e^{x}+c_{2}\left(-e^{-x}\right)$ as functions
We want to conclude that $c_{1}=c_{2}=0$.
We do so by evaluating at suitable values of x :
- At $x=0: \quad 0=c_{1} e^{0}+c_{2}\left(-e^{-0}\right)=c_{1}-c_{2} \quad$, $s c_{2}=c_{1}$
- At $x=1 \quad 0=c_{1} e+c_{1}\left(-e^{-1}\right)=c_{1}(\underbrace{e-\frac{1}{e}}_{\neq 0})$ so $c_{1}=0$

Conclude: $c_{1}=c_{2}=0$.

- Why do we care ? We can show 3 y $\left.\mid y^{\prime \prime}+y=0\right\}=S_{p}\left(e^{x},-e^{-x}\right)$

Example 2: $F_{i x}$

\bar{n} plane though $(0,0,0)$ in \mathbb{R}^{3}

Q: What is the closest pent p to w in the plan π ?
A: Need to minimized $(v, p)=\|v-p\|$ fo P in π

$$
\frac{n}{\sqrt{\langle v-p, v-p\rangle}}
$$

Answer $\overrightarrow{v p} \perp \pi$ so it must 4 propertinal to $\vec{\eta}=$ wound $T o \pi$. Similarly, fix the spaciVof all continuous functius sen $[0,1]$

We have $\rho_{2}=\left\{a+b x+c x^{2} ; a, b, c\right.$ cu $\left.\mathbb{R}\right\}$
(polymuidels of dipper $\leqslant 2$

- Want to find $3=a+b x+c x^{2}$ minimizing
$\|f-P\|=\sqrt{\langle f-P, t-P\rangle}$ ie distance ton f to P_{2}.
We Take $\langle g, h\rangle=\int_{0}^{1} g h_{i x} h_{x,}, d x \quad \begin{gathered}\text { (inner product or } \\ \text { cont hen dives }\end{gathered}$
This extends the within of limes appoximatim for a cont hunctives on $[0,1]$) on $[0,1]$) function near a print x_{0} (use tangent line / tangent plane to the prophe of the function at the pion $\left(x_{0}, f_{(x,)}\right)$ to a quadratic approximation x_{1} the interval $[0,1]$

In this can we identity $a+b x+c x^{2}$ with $\left[\begin{array}{l}a \\ b \\ c\end{array}\right]$ (x cor o of coefficients),
 $a^{\prime}+b^{\prime} x+c^{\prime} x^{3}$
\$2. Vector Spaces:
A general rector space consists of a set of elements (called vectors) $V_{\&}$ a set of scalars $S(\mathbb{R} \pi \mathbb{C})$ with 2 operations:
(1) Addition : $+\mathbb{V} \times \mathbb{V} \longrightarrow \mathbb{V}$

$$
(u, v) \longmapsto u+v
$$

(2) Scalar Multiplication Fr $\mathbb{R}: ~ \bullet: \mathbb{R} \times \mathbb{Y} \longrightarrow \mathbb{V}$ $(\alpha, v) \longmapsto \alpha v$
Want + s. To have nice algebraic properties.
Examples : \mathbb{R}^{n} a all subspaces discussed on page

- $\mathbb{R}^{n \times m}=$ matrices of size $n \times m$ with usual +8 sealer molt.
- Solutions to homogenises differential equations (e.g. $y^{\prime \prime}+y=0$)

Formal definition: A set of elements \mathbb{N} is a vector space seer \mathbb{R} if we can define addition a scalar multiplication on \mathbb{W} \& the following properties hold fr any u, v, ω in \mathbb{Q} \& scalars α, β un \mathbb{R} :

- Closure properties:
(CI) $u+v$ is a rector $m \mathbb{N}$ fo u, vim \mathbb{V}
(cz) αu \qquad from \mathbb{V}, α in \mathbb{R}
- Properties of Addition:
(AI) $u+v=v+u$ [Commutative]
(Az) $u+(v+w)=(u+v)+w$ [Associative]
(A3) There is a vector (1) in \mathbb{W} such that

$$
v+Q=Q+v=v \quad \text { fr all } v \text { in } \mathbb{V}
$$

$0=$ Neutral Element fr V
(A4) Given vim \mathbb{V} there is w in \mathbb{V} such that $v+w=w+v=0$ $\omega=$ Additive inters for

- Peofuties of Scalar Multiplication:
(III) $\alpha \cdot(\beta \cdot v)=(\alpha \beta) \cdot v \quad$ [Commutative]
$\left(1 I_{2}\right) \quad \alpha \cdot(u+v)=\alpha \cdot u+\alpha \cdot v \quad$ [Distributiv el]
$(n 3)(\alpha+\beta) \cdot u=\alpha \cdot u+\beta \cdot u \quad$ [Distributive 2]
(MS) $1 \cdot v=v$ fo all v
Example: $1: N=\{\Phi\}$ with $D+\Phi=\Phi, \alpha \cdot \Phi=\Phi$ satisfies all 10 propectis
Example 2: $n=2$ matrices, $D=\left[\begin{array}{cccc}0 & 0 & 0 & -0 \\ \vdots & 0 & \cdots\end{array}\right]$ with unenal $+s \cdot$.
$\begin{aligned} \text { Example 3: } \mathbb{N} & =\mathbb{R}^{2} \text { with funky addition }\left[\begin{array}{l}u_{1} \\ u_{2}\end{array}\right] \oplus\left[\begin{array}{l}v_{1} \\ v_{2}\end{array}\right]=\left[\begin{array}{l}u_{1}+v_{1}-1 \\ u_{2}+v_{2}-1\end{array}\right] \\ & \text { \& uncial scaler multiplication }\end{aligned}$ * usual scaler multiplication
- (C1), (C2) holds
- (A1) holds
- (A2) $\left[\begin{array}{l}u_{1} \\ u_{2}\end{array}\right] \oplus\left(\left[\begin{array}{l}v_{1} \\ v_{2}\end{array}\right] \oplus\left[\begin{array}{l}w_{1} \\ w_{2}\end{array}\right]\right)=\left[\begin{array}{l}u_{1} \\ u_{2}\end{array}\right] \oplus\left[\begin{array}{l}v_{1}+w_{1}-1 \\ v_{2}+w_{2}-1\end{array}\right]=\left[\begin{array}{l}u_{1}+v_{1}+w_{1}-2 \\ u_{2}+v_{2}+w_{2}-2\end{array}\right]$ (1)
$\left(\left[\begin{array}{l}u_{1} \\ u_{2}\end{array}\right] \oplus\left[\begin{array}{l}v_{1} \\ v_{2}\end{array}\right]\right) \oplus\left[\begin{array}{l}w_{1} \\ w_{2}\end{array}\right]=\left[\begin{array}{l}u_{1}+v_{1}-1 \\ u_{2}+v_{2}-1\end{array}\right] \oplus\left[\begin{array}{l}w_{1} \\ w_{2}\end{array}\right]=\left[\begin{array}{l}u_{1}+v_{1}+w_{1}-2 \\ u_{2}+v_{2}+w_{2}-2\end{array}\right]$
- (AB) $\left[\begin{array}{l}v_{1} \\ v_{2}\end{array}\right]=\left[\begin{array}{l}v_{1} \\ v_{2}\end{array}\right] \oplus\left[\begin{array}{l}u_{1} \\ u_{2}\end{array}\right]=\left[\begin{array}{l}v_{1}+u_{1}-1 \\ v_{2}+u_{2}-1\end{array}\right] \leadsto\left\{\begin{array}{l}v_{1}=v_{1}+u_{1}-1 \\ v_{2}=v_{2}+u_{2}-1\end{array} \quad m \quad u_{1}=u_{2}=1\right.$

Neutral Element $D_{\text {new }}=\left[\begin{array}{l}1 \\ 1\end{array}\right]$

- (A4) $\left[\begin{array}{l}1 \\ 1\end{array}\right]=\left[\begin{array}{l}v_{1} \\ v_{2}\end{array}\right] \oplus\left[\begin{array}{l}w_{1} \\ w_{2}\end{array}\right]=\left[\begin{array}{l}v_{1}+w_{1}-1 \\ v_{2}+w_{2}-1\end{array}\right]$ ms $\begin{array}{ll}v_{1}+w_{1}-1=1 & \text { so } w_{2}=2-v_{1} \\ v_{2}+w_{2}-1=1 & w_{2}=2-v_{2}\end{array}$
-(III) holds or $\left[v_{2}\right]=\left[\begin{array}{ll}2 & v_{1} \\ 2-v_{2}\end{array}\right]$
-(ML) $\quad \alpha\left(\left[\begin{array}{l}u_{1} \\ u_{2}\end{array}\right] \oplus\left[\begin{array}{l}v_{1} \\ v_{2}\end{array}\right]\right)=\alpha\left[\begin{array}{l}u_{1}+v_{1}-1 \\ u_{2}+v_{2}-1\end{array}\right]=\left[\begin{array}{l}\alpha u_{1}+\alpha v_{1}-\alpha \\ \alpha u_{2}+\alpha v_{2}-\alpha\end{array}\right]$

$$
\alpha\left[\begin{array}{l}
u_{1} \\
u_{2}
\end{array}\right] \oplus \alpha\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
\alpha u_{1} \\
\alpha u_{2}
\end{array}\right] \oplus\left[\begin{array}{l}
\alpha v_{1} \\
\alpha v_{2}
\end{array}\right]=\left[\begin{array}{l}
\alpha u_{1}+\alpha v_{1}-1 \\
\alpha u_{2}+\alpha v_{2}-1
\end{array}\right]
$$

To get $=$ we must have $\alpha=1 \quad$ But scales are arbitrary!
conclude: (M2) pails.
(II) similarly fails
(ny) holds
Conclude: $\left(\mathbb{R}^{2}, \oplus, \cdot\right)$ is NOT a rector space.
Example 4: $\mathbb{N}=\{2 \times 2$ singular matrices $\}$ is Not a vector space
(K_{1}) - (A_{4}) , ($\left.A_{1}\right),\left(A_{2}\right)$ hold
$A=\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right]$ is singular sits (1) ,so (A3) holds
(A4) A simpuler, Additure insens $=-A$ is also singuler.
(C2) holds Asimguler, then αA also singuler

$$
\left\{\cot _{1} A, \cot A\right\} l d . \quad\{\alpha \cot , A, \alpha \cot A\} \text { als } l . d .
$$

(c1) faik: $\left[\begin{array}{ll}{\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right]} \\ \text { sing }\end{array} \underset{\text { bing }}{\left[\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right]}=\underset{\text { non-ring }}{\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]}\right.$ so W is not closed undut.
Example 5: $\quad \rho_{2}=\left\{a+b x+c x^{2}: a, b, c\right.$ in $\left.\mathbb{R}\right\}=$ polyminials of deprec $\leqslant 2$

$$
\begin{aligned}
& +:\left(a+b x+c x^{2}\right)+\left(a^{\prime}+b^{\prime} x+c^{\prime} x^{2}\right)=\left(a+a^{\prime}\right)+\left(b+b^{\prime}\right) x+\left(c+c^{\prime}\right) x^{2} \\
& \cdot \quad \alpha\left(a+b x+c x^{2}\right) \equiv(\alpha a)+(\alpha b) x+(\alpha c) x^{2}
\end{aligned}
$$

((C1), (C2) hold , (A1), (A2), (M1) —(M4) hold
$(A 3) D=0+0 \cdot x+0 \cdot x^{2}$ mutral element
(A1) $-P=(-1) P$ additise inserse

$$
3_{2}=S_{p}\left(1, x, x^{2}\right)
$$

