$$\frac{d_{12}d_{22}d_{22}d_{23}d_$$

Next, we discuss each case & de examples. We use the same imput matrix A in allexamples.

Solution(II). Replace now Riby Ritarkj for joint in R³
Example:
$$A = \begin{pmatrix} 1 & 0 \\ 3 & 4 & 5 \end{pmatrix} \xrightarrow{R_2 \to R_2 = R_1} B = \begin{pmatrix} 1 & 0 & 2 \\ 0 & 4 & 5 \end{pmatrix}$$

Let $B = +1 \mid \begin{pmatrix} 1 & 0 \\ - & 0 & \end{pmatrix} \xrightarrow{R_2 \to R_2 = R_1} B = \begin{pmatrix} 1 & 0 & 2 \\ 0 & 4 & 5 \end{pmatrix}$
Let $B = +1 \mid \begin{pmatrix} 1 & 0 \\ - & 0 & \end{pmatrix} \xrightarrow{R_2 \to R_2 = R_1} B = \begin{pmatrix} 1 & 0 & 2 \\ 0 & 4 & 5 \end{pmatrix}$
Let $B = +1 \mid \begin{pmatrix} 1 & 0 \\ - & 0 & \end{pmatrix} \xrightarrow{R_2 \to R_2 = R_1} B = \begin{pmatrix} 1 & 0 & 2 \\ 0 & 4 & 5 \end{pmatrix}$
Let $B = +1 \mid \begin{pmatrix} 1 & 0 \\ - & 0 & \end{pmatrix} \xrightarrow{R_2 \to R_2 = R_1} B = \begin{pmatrix} 1 & 0 & 2 \\ 0 & 4 & 5 \end{pmatrix}$
Let $B = +1 \mid \begin{pmatrix} 1 & 0 \\ - & 0 & \end{pmatrix} \xrightarrow{R_2 \to R_2 = R_1} B = \begin{pmatrix} 1 & 0 & 2 \\ 0 & 4 & 5 \end{pmatrix}$
Let $B = +1 \mid \begin{pmatrix} 1 & 0 \\ - & 0 & \end{pmatrix} \xrightarrow{R_2 \to R_2 = R_1} B = \begin{pmatrix} 1 & 0 & 2 \\ 0 & 4 & 8 \end{pmatrix}$
Let $B = +1 \mid \begin{pmatrix} 1 & 0 & 2 \\ - & 0 & 1 \end{pmatrix}$
Let $B = +1 \mid \begin{pmatrix} 1 & 0 & 2 \\ - & 0 & 1 \end{pmatrix}$
Let $B = +1 \mid \begin{pmatrix} 1 & 0 & 2 \\ - & 0 & 1 \end{pmatrix}$
Let $B = -1 = Let (A)$
So the constant of the performance of the letterminant will be
recurs and the elementary operatures to find $A \sim A'$ with A' in EF
Since on EF matrix is upper triangular, its determinant will be
recurs any to compute (ifs just the performed to keep track of which
operatures are use a enemption the effect on the determinant
mis Moontham for computing det (A)
(1) Find $A \sim A'$ A' in EF
(2) (mypetie det (A')
(3) Use the recorded operatures to recorded (A) hum det (A')
We do one example:
Example: $A = \begin{bmatrix} 1 & 2 & 0 & 2 \\ 0 & 4 & 8 & 4 \\ -3 & 2 & -1 & 0 \\ 2 & -3 & -2 & 1 \end{bmatrix}$
• At each step $A_1 \longrightarrow A_{i+1}$ of the new induction, we here track of
the changes in the determinant. (is write the new determinant in
terms of let(A).)

• At the very end, in will get
$$Rd(A) = dd(A)$$
 is since we can
early compute det (A') using the formula for thrangelar matrices
8 us have $R_{3}^{-1} \oplus e^{-2}A$ be able to solve for det A.
A = $\begin{bmatrix} 1 & 2 & 0 & 2 \\ 0 & 4 & 8 & 4 \\ -3 & 2 & -1 & 0 \\ 2 & -3 & -2 & 1 \end{bmatrix} \xrightarrow{R_{3} \rightarrow R_{3} + 3R_{1}} \begin{bmatrix} 1 & 2 & 0 & 2 \\ 0 & 8 & -1 & 0 \\ 0 & 8 & -1 & 0 \\ 2 & -3 & -2 & 1 \end{bmatrix} \xrightarrow{R_{3} \rightarrow R_{3} + 3R_{1}} \begin{bmatrix} 1 & 2 & 0 & 2 \\ 0 & 8 & -1 & 0 \\ 0 & 8 & -1 & 0 \\ 2 & -3 & -2 & 1 \end{bmatrix} \xrightarrow{R_{3} \rightarrow R_{3} + 3R_{1}} \begin{bmatrix} 1 & 2 & 0 & 2 \\ 0 & 8 & -1 & 0 \\ 0 & 8 & -1 & 0 \\ 0 & -7 & -2 & -3 \end{bmatrix} \xrightarrow{R_{2} \rightarrow R_{2}} \begin{bmatrix} 1 & 2 & 0 & 2 \\ 0 & -7 & -2 & -3 \end{bmatrix} \xrightarrow{R_{1} \rightarrow R_{2} - 2R_{2}} \begin{bmatrix} 1 & 2 & 0 & 2 \\ 0 & -7 & -2 & -3 \end{bmatrix} \xrightarrow{R_{1} \rightarrow R_{2} - 2R_{2}} \begin{bmatrix} 1 & 2 & 0 & 2 \\ 0 & -7 & -2 & -3 \end{bmatrix} \xrightarrow{R_{1} \rightarrow R_{2} - 2R_{2}} \xrightarrow{R_{2} \rightarrow R_{2} - 2R_{2}} \xrightarrow{R_{1} \rightarrow R_{2} - 2R_{2}} \xrightarrow{R_{2} \rightarrow R_{2} \rightarrow R_{2}$

5 Determinants of Non-ringular matrices:
Theorem: A of size next is invertible if and only if det A
$$\neq 0$$
.
Why is this?
Recall: Algorithm to produce A⁻¹ or show A⁻¹ does not exist
(K) (A | In) ~ (A' | B) A' REF
of A is invitable, we get A' = In
of A is not invertible, we get A' = In
of A is not invertible, we get A' has a now of genees at the and
In particular, the same of vortions we used in (A) give A ~ A'
No matter what the exact of perations we use, we always out
but R' = (3 det (A) for some Inverse B (in our example
from before, we had A' EF a (S = $-\frac{1}{68} = -\frac{1}{3}$)
of A is invitible, then A' = In so det A' = det [1,0]
(include: det (A) = $\frac{det A'}{10} = \frac{1}{10} \neq 0$
 $\frac{1}{10} A$ is not invertible then A' = $(-1)^{n} = 1$
 $\frac{1}{10} A$ is not invertible then A' = $(-1)^{n} = 1$
 $\frac{1}{10} A$ is not invertible then A' = $(-1)^{n} = 1$
 $\frac{1}{10} A$ is not invertible then A' = $(-1)^{n} = 1$
 $\frac{1}{10} A$ is not invertible then A' = $(-1)^{n} = 1$
 $\frac{1}{10} A$ is not invertible then A' = $(-1)^{n} = 1$
 $\frac{1}{10} A$ is not invertible then A' = $(-1)^{n} = 0$
 $\frac{1}{10} A$ is not invertible then A' = $(-1)^{n} = 1$
 $\frac{1}{10} A$ is not invertible then A' = $(-1)^{n} = 1$
 $\frac{1}{10} A$ is not invertible matrices have determinant $\neq 0$
 $\frac{1}{10} A$ is not invertible matrices have determinant $\neq 0$
 $\frac{1}{10} A$ is not invertible matrices have determinant $\neq 0$
 $\frac{1}{10} A$ is not invertible matrices have determinant $\neq 0$
 $\frac{1}{10} A$ is not invertible matrices have determinant $\neq 0$
 $\frac{1}{10} A$ is not invertible matrices have determinant $\neq 0$
 $\frac{1}{10} A$ is not invertible matrices have determinant $\neq 0$
 $\frac{1}{10} A$ is the diverties with dive to are non-invertible.
This is exactly what we matrice the non-invertible.