<u>Lecture I</u>: \$1.1 Matrices and limar systems of equations \$1. Introduction;

• The main object of study in Linnar Algebra is a system of <u>linnar equations</u> Such systems an conseriently encoded using <u>mutices</u> and an explicitly solved using an algorithm (<u>Gauss - Jordan elimination</u>) • In this course, we will go over this method in detail. this lecture and the next one are deroted to this. For the main part of this course, we will see a <u>re-interpretation of matrices</u>, by viewing them as linnar transformations between rector spaces

• The problem of solving a system of linear equations will also be rephrased in the language of vectors and <u>linear dependence</u>. • Applications (statistical nuchanics) often require to solve the <u>eigenvalue</u> markor processes problem, which in turn combines ell the concepts discussed earlier (<u>Ilea</u>: given a matrix A of size non a N>0 lange, compute A^N or its asymptotic behavior mus compute (langest) eigenvalues / diagnalize A if problem

(We will go over definitions and examples of all underlimed words in the provides paragraphs - don't worry!)

Three objectives: () Solve the simplist types of equations in 200 more variables (LINEAR!) (MATH 2153 - CALCITT) EXAMPLE. X + 2Y + Z = 10 describes a plane in R³ with wormal derection < 1, 2, 1>, passing through (10, 0, 0). (2) Introduce underlying algebraic structures of these solution sets m> Vector spaces of finite dimension. EXAMPLE: Solutions to homogeneous differential equations, eg y⁴y=0 g(x) = a cox + b vinx for any a, b rul numbers basis for the space of solutions
Can add two solutions & get another solution . Can multiply a solution by a fixed number and get a soln. 3 Applications: Sohe the eigenvalue / eigenrector problem. <u>\$1. Linnar equations.</u> (fix 'n = 1, 2, 3,) Dépinition: A linear equation in n variables is an equation of the form $a_1 X_1 + a_2 X_2 + \cdots + a_n X_n = b$ (*)

a, a₂, ..., a_n, b are fixed numbers (usually rual numbers, 57 complex numbers)
X₁, X₂, ..., X_n are unknowns (variables)

The word "linear" refers to the fact that the <u>degree of each variable</u> on the left-hand side of (*) is 1.

$$\frac{\text{E xamples : (1)}}{\text{two variables}} = \begin{array}{c} 2x_1 + 3x_2 = 6 & \text{is a linear equalism in} \\ x_1 = 3 \\ x_2 = 0 \end{array} \quad \text{is a solution ; } \begin{array}{c} x_1 = 0 \\ x_1 = 2 \\ x_2 = 2 \end{array} \quad \text{is a solution ; } \begin{array}{c} x_1 = 0 \\ x_2 = 2 \\ x_2 = 2 \end{array} \quad \text{is also a solution ; } \begin{array}{c} x_1 = 0 \\ x_2 = 2 \\ x_2 = 2 \end{array} \quad \text{is also a solution ; } \begin{array}{c} x_1 = 0 \\ x_2 = 2 \\ x_2 = 2 \end{array} \quad \text{is also a solution ; } \begin{array}{c} x_1 = 0 \\ x_2 = 2 \\ x_2 = 2 \\ x_2 = 2 \end{array}$$

(2) X + 2y + z = 9 is a linear equation in three variables X, y and z.

(Fr n=2, we are used to colling the variables X and y instead of X, and X₂. Similarly, for n=3 we are used to X, J, Z, instead of X1, X2, X3). (3) sin (X1) + ws (X2) =1 is NOT a linear equation

Définition: A system of linear équations (7 just a linear system) is a finite collection of linear équations.

$$\frac{E \times amples}{2x} (1) \begin{cases} x + y = 3 \\ 2x - y = 3 \end{cases}$$

$$(square system)$$

$$(z) \begin{cases} x + y + 2z = 4 \\ 2x + y = 0 \end{cases}$$

$$(square system) z = quations in 3 variables$$

Goal: Find solutions to a linear system of equations I dea. Eliminate variables to get an equation with only one variable on its left-hand side.

Example (1)
$$\begin{cases} x+y = 3\\ 2x-y = 3 \end{cases}$$

Adding the two equations gives $3x=6 \implies x=2$
Thug it back in the original equation to get $[y=1]$
Conduction: The system has a unique solution: $[x=2]$
 $g=1$
(2) $\begin{cases} x+y+z=9\\ 2x+y=0 \end{cases}$ $y=-2x$
Replace y by $-2x$ in the first equation to get
 $-x+z=9 \implies x=22-9$
 $y=-2x=-92+8$
So for any value of $2=t$ in TR (such numbers), we have a
solution $[x=2t-9]$
 $y=-9t+8$
 $z=t$
there are infinitly many solutions to the system.
(3) $x+3y=9 \qquad \text{mass} \qquad \int 2x+6y=8 \end{cases}$

Observation: Later in the course, we will see that

Every linear system of equations has either
0, 1 or
$$\infty$$
 number of solutions
¹ inhimity

For n=2 or 3 (number of variables is 2 or 3) we can see geometrically that this is true:

. If the linear system consists of only one equation, then there are inhimitely many solutions (as many as the prints in the plane it defines)

. If the linear system consists of z equations, then there are z possibilities:

E.g. System (2) on page 4:
$$\begin{cases} x + y + zz = 4 \\ zx + y = 0 \end{cases}$$

Solutions of this system can be identified with the following
line: $\begin{cases} x = zt - 4 \\ y = -4t + 8 \end{cases}$ parametric form of the line
through $(-4, 8, 0) \rightarrow set t = 0$,
 $z = t \end{cases}$ along the derection rector
 $\langle z, -4, 1 \rangle \sim coeffes of t$