Lecture I: §1.1 Matrices and limar systems of equations
§1. Introduction:

- The main object of study in Lima Algebra is a system of linear equations Such systems an conseniently encoded using mentions and are explicitly solved using an algrithon (Gauss-Jordan elimination)
- In this cause, we will go over this method in detail; this lecture and the next one are denoted To this. For the main part of this course, we will see a re-interpectation of matrices, by viewing them as limar transformations between rector spaces
- The problem of solving a system of linear equations will also be rephrased in the language of vectors and limar dependence.
- Applicative $\left(\begin{array}{c}\text { statistical mechanics } \\ \text { min liter met works } \\ \text { Hanker processes }\end{array}\right)$ often require to solve the eigenvalue problem, which in $\frac{\text { mousses }}{\text { lumbines all the concepts discussed earlier }}$ (ILea: given a matrix A if size $n \times n$ \& $N \gg 0$ large, compute $A^{N} r$ its asymptotic belvasion mus compute (largest) eigen ralués/diagmalige A if possible)

Ch 5: Abstract Vector Spaces $\&$ Limen Transf
(We will go oren definitions and examples of all underlined words in the prions paragraphs - don't worry!)

Three objectives:
(1) Sols the simplest types of equations in $2 \pi \mathrm{mre}$ variables, (LINEAR!) (MATH 2153-CALCIII)
EXAMPLE: $\quad X+2 Y+z=10$ describes a plane in \mathbb{R}^{3} with ural direction $\langle 1,2,1\rangle$, passing through $(10,0,0)$.
(2) Introduce undulying algebraic structures of these solution sets \leadsto Vector spaces of finite dimension.
EXAMPLE: Solutions to honogenions differential equations, eg $y^{\prime \prime}+y=0$

- $y(x)=a \cos x+b \sin x$ for any a, b real numbers
basisfor the space of solutions
- Can add Too solutions \& get another solution
- Can multiply a solution by a fixed number and get a sole.
(3) Applications: Soke the eiginvalue/eigensecter problem.
§1. Lima equations: $\quad(f i x \quad n=1,2,3, \ldots)$
Definition: A linear equation in n variables is an equation
of the from $a_{1} x_{1}+a_{2} x_{2}+\cdots+a_{n} x_{n}=b$
- $a_{1}, a_{2}, \ldots, a_{n}, b$ an fixed numbers (usually rial numbers, r complex numbers)
- $X_{1}, x_{2}, \ldots, x_{n}$ are unknowns (variables)

The word "limar" refers to the fact that the degree of each variable on the left-hand side of $(*)$ is 1 .
Examples: (1) $2 x_{1}+3 x_{2}=6$ is a lima equation in
Two variables $\begin{aligned} & x_{1}=3 \\ & x_{2}=0\end{aligned}$ is a solution; $\begin{aligned} & x_{1}=0 \\ & x_{2}=2\end{aligned}$ is also a
(2) $x+2 y+z=9$ is a lima equation in three variables x, y and z
(Fr $n=2$, we are used To calling the variables x and y instead of x_{1} and x_{2}. Similarly, fr $n=3$ we are used to x, y, z, instead of x_{1}, x_{2}, x_{3}).
(3) $\sin \left(x_{1}\right)+\cos \left(x_{2}\right)=1$ is NOT a limar equation.

Definition: A system of linear equations (r just a limar system) is a finite collection of lima equations.
Examples. (1) $\left\{\begin{aligned} x+y & =3 \\ 2 x-y & =3\end{aligned}\right.$ liner system of 2 equations in 2 variables
(2) $\left\{\begin{array}{l}x+y+2 z=4 \\ 2 x+y=0\end{array} \quad\right.$ linear system of 2 equations in 3 variables

Goal: Find solutions to a limar system of equations
Ida: Eliminate variables to get an equation with sill one variable on its lelt-hand side.

Example (1) $\left\{\begin{array}{l}x+y=3 \\ 2 x-y=3\end{array}\right.$
Adding the two equations gives $3 x=6 \Rightarrow x=2$
Plug it back in the riginal equation to get $y=1$
Conclusion: The system has a unique solution: $\begin{aligned} & x=2 \\ & y=1\end{aligned}$ $y=1$
(2) $\left\{\begin{array}{rl}x+y+2 z & =4 \\ 2 x+y & =0\end{array} \quad m \quad y=-2 x\right.$

Replace y by $-2 x$ in the first equation to get

$$
\begin{aligned}
-x+2 z=4 \quad \Rightarrow \quad x & =2 z-4 \\
y & =-2 x=-4 z+8
\end{aligned}
$$

So for any value of $z=t$ in \mathbb{R} (real numbers), we hare a solution

$$
\begin{aligned}
& x=2 t-4 \\
& y=-4 t+8 \\
& z=t
\end{aligned}
$$

there are infinitely many solutions to the system.
(3)

$$
\begin{aligned}
& x+3 y=4 \\
& 2 x+6 y=10 \quad \text { Multiply }
\end{aligned} \quad\left\{\begin{array}{l}
2 x+6 y=8 \\
2 x+6 y=10
\end{array}\right.
$$

the $1^{\text {stefefy }}$ by z
Substracting, we get $0=2$! We conclude the system has no solution at all.

Observation: Later in the course, we will see that
Every linear system of equations has uther
0,1 r ∞ number of solutions infinity

Fr $n=2$ r 3 (number of variables is $2 r 3$) we can see geometrically that this is true:

- $n=2$: Every liner equation in 2 variables defines a line in the plane \mathbb{R}^{2}.

Egg. $x+y=2$

Assume we are given 2 linear equations in 2 variables.
Geometrically, the two lines L_{1} and L_{2} defined by these equations are either parallel, r they intersect at a unique pint, $r L_{1}=L_{2}$

No

Unique Solution

∞ - many Solutions

- $n=3$: Every linear system in 3 variables defines a plane m \mathbb{R}^{3} E.g. $\quad X=0$

- If the linear system consists of only one equation, then there are infinitely many solutions (as many as the pouts in the plane it depress)

Eff. $x+y+2 z=4 \quad$ Fr any choice of $x=5$ (s ,tare real we have a solution

$$
\begin{aligned}
& x=s \\
& y=t \\
& z=\frac{4-5-t}{2}
\end{aligned}
$$

$$
y=t \quad \text { numbers) }
$$

- If the linear system consists of 2 equations, then there are 2 possibilities :

(No solution)

E.g. System (2) in page 4: $\left\{\begin{array}{r}x+y+2 z=4 \\ 2 x+y=0\end{array}\right.$

Solutions of this system can be identified with the hollowing
line:

$$
\begin{cases}x=2 t-4 \\ y=-4 t+8 & \ll \\ z=t & \text { parametric form of the line } \\ & \text { through }(-4,8,0) \rightarrow \text { set } t=0, \\ & \text { along the diction rector } \\ & \langle 2,-4,1\rangle \leadsto \text { cuffs of } t\end{cases}
$$

Remarks: (1) Later in the course, we will see a proof of the pact that if \#eprations < \# variables, then there are either wo solutions, r infinitely many solutions.
(2) Whin a system admits infinitely many solutions, the set of solutions can be parameterized by a certain number of pe parameters. We will also discuss the impritance of this number in what will be called "rank-nullity therem" $\binom{$ eg above: $x+y+2 z=4$ can be described using 2 free pram }{$\left\{\begin{array}{l}x+y+2 z=4 \\ 2 x+y=0\end{array}\right.$ I free pram e }

