Lecture II: §1.1 Matrices and lima systems of equations II \$1.2 Echelon fris \& Gauss-Jrdan Elimination
Last time we saw an review of the course, we introduced liner equations\& set ourselves the grab of string a system of linear equations.

Main result: System e of linear equation have either none, unique r infinitely many solutions.
TODAY, we will formulate this goal precisely and go er a general method to simplify and solve a liner system.
Key idea:
matrices
System of m Linear equations
m
Array of numbers in n unknowns ($m n+m$ many)
$(A)\left\{\begin{array}{c}E_{q n 1}: a_{11} x_{1}+a_{12} x_{2}+\cdots+a_{1 n} x_{n}=b_{1} \\ E_{q n} 2: \\ a_{21} x_{1}+a_{22} x_{2}+\cdots+a_{2 n} x_{n}=b_{2} \\ \vdots \\ E_{f_{n} m}: a_{m 1} x_{1}+a_{m 2} x_{2}+\cdots+a_{m n} x_{n}=b_{m}\end{array}\right.$

$$
\left[\begin{array}{cccc|c}
a_{11} & a_{12} & \cdots & a_{1 n} & b_{1} \\
a_{21} & a_{22} & \cdots & a_{2 n} & b_{2} \\
\vdots & \vdots & & \vdots & \\
a_{m 1} & a_{m 2} & \cdots & a_{m n} & b_{n n}
\end{array}\right]
$$

- $a_{11}, a_{12}, \ldots, a_{1 n}, \ldots, a_{m 1}, \ldots, a_{m n}$
are fixed numbers (mn of them), called the coefficients of the linear system
- $b_{1}, b_{2}, \ldots, b_{m}$ are fixed members, called the constant terms.
- $X_{1}, X_{2}, \ldots, X_{n}$ are unknowns (variables)
§1 Matrices:
Definition: An $m \times n$ matrix is a rectangular andy of numbers abbreviated as $A=\left(a_{i j}\right) \underset{\substack{1 \leqslant i \leqslant m \\ 1 \leqslant j \leqslant n}}{ }$

$$
i=\text { wo index }
$$

$j=$ coleman index

$$
A=\left[\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{22} & \cdots & a_{2 n} \\
\vdots & \vdots & & \vdots \\
a_{m 1} & a_{m 2} & \cdots & a_{m n}
\end{array}\right] \quad \begin{aligned}
& \text { \#of rows }=m \\
& \text { \#of columns }=n
\end{aligned}
$$

Examples: (1) $\left[\begin{array}{ccc}1 & 0 & 2 \\ 3 & -1 & 9\end{array}\right] \quad$ is a 2×3 matux
(2) $\left[\begin{array}{cc}0 & 1 \\ -1 & 5\end{array}\right]$ is a 2×2 matrix (square matrix)

- If $m=n$, we say that A is a square matrix
\$2. Representing a linear system as a matrix
A general linear system of m equations in n unterowns (x) as imp pages is usually written as the following matrix of m rows \& $n+1$ columns

$$
B=[A \mid b]=\left[\begin{array}{ccc|c}
a_{11} & \cdots & a_{1 n} & b_{1} \\
\vdots & \ddots & \vdots & \vdots \\
a_{m 1} & \cdots & a_{m n} & b_{m}
\end{array}\right]
$$

called the augmented matrix of the system (*). The matrix A is called the coefficient matrix of the system (*)
Example: Consider the following liner system of 3 equations in 3 unknowns

$$
\left\{\begin{array}{rl}
x_{1}-2 x_{2}+x_{3} & =4 \\
x_{1} \\
+x_{3} & =1 \\
x_{2}-2 x_{3} & =5
\end{array} \quad \leadsto A=\left[\begin{array}{ccc}
1 & -2 & 1 \\
1 & 0 & 1 \\
0 & 1 & -2
\end{array}\right]\right.
$$

coefficient matrix
$\begin{aligned} & \text { (Missing variables mans cefficientzo) } \\ & \text { (Good practice - align variables in the ens) }\end{aligned} \quad B=\left[\begin{array}{ccc|c}1 & -2 & 1 & 4 \\ 1 & 0 & 1 & 1 \\ 0 & 1 & -2 & 5\end{array}\right]$ augmented matrix
§3. Elementary operations:
There are 3 operations we can perform on a linear system (augmented matrix) without changing its set of solutions. Write the equations as $E 1, E 2, \ldots, E_{m}$.
GOAL: \square
Simpler system = fewer terms

Simple matrix B (ECHELON FORM)

- Elementary_ Operation 1: SWAP. We can interchange 2 equations (if we swap E_{i} and E_{j}, we write it as $E_{i} \longleftrightarrow E_{j}$)
- Elementary Operation II: SCALE. We can choose a non-zero number Say α, and replace E_{i} by αE_{i}, ie. $E_{i} \longrightarrow \alpha E_{i}$.
- Elementary Operation III: COMBINE. We can replace E_{i} by $E_{i}+\lambda E_{j}$, where $j \neq i$ and λ is an arbitrary number, ie $E_{i} \longrightarrow E_{i}+\lambda E_{j}$
Theorem 1: Elementary operations do not change the set of solutions of the input lime system. (We get "equivalent systems") Proof: It is char that operations 1 and 11 can be reversed. Let us show why III can be reversed:

System S
El
EZ
\vdots
Em

Back To system S

$$
E_{i}^{\prime} \rightarrow E_{i}^{\prime}+(-\lambda) E_{j}^{\prime}
$$

Obseusatin: These operations can be performed on the Rows of the augmented matrix producing simpler systems (with many O's
in staincase froe) that are rex easy T_{0} solve. This is the core of the Gauss-Jrdan Elimination algorithm.

Example:
$E_{1}: \quad x_{1}-x_{2}+x_{3}=1$
$E_{2}: \quad x_{1}+x_{2}-x_{3}=5$
$E_{3}: \quad x_{1}+2 x_{2}+4 x_{3}=10$
Combine
$E_{2} \rightarrow E_{2}-E_{1}$
$E_{3} \rightarrow E_{3}-E_{1}$
$E_{3} \rightarrow E_{3}-E_{1}$

$$
\begin{aligned}
x_{1}-x_{2}+x_{3} & =1 \\
x_{2}-x_{3} & =2 \quad \text { <min } \\
2 x_{3} & =1 \quad \underbrace{E_{2}}_{E_{3} \rightarrow E_{3}-E_{2}}
\end{aligned}
$$

$$
\begin{aligned}
x_{1}-x_{2}+x_{3} & =1 \\
2 x_{2}-2 x_{3} & =4 \\
3 x_{2}+3 x_{3} & =9
\end{aligned}
$$

$$
\left\{\begin{array}{l}
\frac{\text { scale }}{E_{2} \rightarrow \frac{1}{2}} E_{2} \\
E_{3} \rightarrow \frac{1}{3} E_{3}
\end{array}\right.
$$

$x_{1}-x_{2}+x_{3}=1$
$x_{2}-x_{3}=2$
$x_{2}+x_{3}=9$

Conclude

$$
\begin{aligned}
& x_{3}=\frac{1}{2} \\
& x_{2}=2+x_{3}=2+\frac{1}{2}=5 / 2 \\
& x_{1}=1+x_{2}-x_{3}=1+\frac{5}{2}-\frac{1}{2}=3
\end{aligned}
$$

(heck (in the rigimal system) $\quad x_{1}-x_{2}+x_{3}=3-\frac{5}{2}+\frac{1}{2}=\frac{6-5+1}{2}=1 \mathrm{~V}$

$$
\begin{aligned}
& x_{1}+x_{2}-x_{3}=3+\frac{5}{2}-\frac{1}{2}=\frac{6+5-1}{2}=5 \\
& x_{1}+2 x_{2}+4 x_{3}=3+2\left(\frac{5}{2}\right)+4\left(\frac{1}{2}\right)=3+5+2=10
\end{aligned}
$$

Operations in the matrix:

$$
\left[\begin{array}{ccc|c}
1 & -1 & 1 & 1 \\
1 & 1 & -1 & 5 \\
1 & 2 & 4 & 10
\end{array}\right] \underset{\substack{R_{2} \rightarrow R_{2}-R_{1} \\
R_{3} \rightarrow R_{3}-R_{1}}}{\sim}\left[\begin{array}{ccc|c}
1 & -1 & 1 & 1 \\
0 & 2 & -2 & 4 \\
0 & 3 & 3 & 9
\end{array}\right] \underset{\substack{R_{2} \rightarrow \frac{1}{2} R_{2} \\
R_{3} \rightarrow \frac{1}{3} R_{3}}}{\longrightarrow}\left[\begin{array}{rcc|c}
1 & -1 & 1 & 1 \\
0 & 1 & -1 & 2 \\
0 & 1 & 1 & 3
\end{array}\right]
$$

$$
\underset{R_{3} \rightarrow R_{3}-R_{2}}{m}\left[\begin{array}{ccc|c}
1 & -1 & 1 & 1 \\
0 & 1 & -1 & 2 \\
0 & 0 & 2 & 1
\end{array}\right] \leadsto\left[\begin{array}{ccc|c}
11 & -1 & 1 & 1 \\
0 & 1 & -1 & 2 \\
0 & 0 & 1 & 1 / 2
\end{array}\right]
$$

echelon/ staircase form
§ 4 Echelon from:
Using 3 Elementary Row Operations (Swap, Scale, Combine) we can bring the augmented matrix of a system into Echelon form.

Definition: An res matrix B is said the be in Echelon from if (i) all rows containing sly zeroes are at the brtion of B
(ii) in every num-zeronow, the first (from the left) nom-zens entry is 1
(iii) if a now is nonzero, its first non-zero entry is to the right of the first non-zero entry of the previous now.
Intuitively, this means that the matrix has a "staircase ahafe" (echelon = From the French word e'chelle, maxing ladder)

Definitum: Reduced echelon from $=$ echelon from t o's above each starting 1 .

Examples: (1) $\left[\begin{array}{llll}0 & 1 & 3 & 0 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 1\end{array}\right] \&\left[\begin{array}{cccc}1 & -1 & 0 & 0 \\ 0 & 0 & 0 & 1\end{array}\right]$ are in echelon from Last me in redechelonf.
(2) $\left[\begin{array}{lll}0 & 1 & 2 \\ 1 & 0 & 3 \\ 0 & 0 & 4\end{array}\right]$ is not in echelon from, but it can be brought in T_{0} it by elementary row ophatims:

$$
\left[\begin{array}{lll}
0 & 1 & 2 \\
1 & 0 & 3 \\
0 & 0 & 4
\end{array}\right] \underset{\substack{\text { swap } \\
R_{1} \leftrightarrow R_{2}}}{\sim}\left[\begin{array}{lll}
1 & 0 & 3 \\
0 & 1 & 2 \\
0 & 0 & 4
\end{array}\right] \underset{\substack{\text { Sal } \\
R_{3} \frac{1}{4} R_{3}}}{\sim}\left[\begin{array}{lll}
1 & 0 & 3 \\
0 & 1 & 2 \\
0 & 0 & 1
\end{array}\right]
$$

Q Why do we care about echelon form matrices?
A: If the augmented matrix of a liner system is in echelon form, then the system is very easy To solve! We just need To solve from bottom to top. Fenthermou, if solutions exist the number of pee parameters needed to write all the solutions is
\# oolemins of A - \# nonzero rows of B

- Solutions will exist if, and may if, \# zen nous of $A=\#$ geo worsof B
- The elimination algorithm (Gauss-Jrdan) produces a matrix in echelon from stating from any matrix ria elementary now operations (Next Time)
Example: 3 equations in 4 variables $\left\{\begin{array}{l}x_{2}+x_{3}-x_{4}=3 \\ x_{1}+2 x_{2}-x_{3}+x_{4}=2 \\ -x_{1}+x_{2}+7 x_{3}-x_{4}=1\end{array}\right.$

$$
\begin{aligned}
& \underset{\substack{\text { swap } \\
R_{1} \leftrightarrow R_{2}}}{ }\left[\begin{array}{cccc|c}
1 & 2 & -1 & 1 & 2 \\
0 & 1 & 1 & -1 & 3 \\
-1 & 1 & 7 & -1 & 1
\end{array}\right] \underset{\substack{\text { Combime } \\
R_{3} \rightarrow R_{3}}}{\text { anim }}\left[\begin{array}{cccc|c}
1 & 2 & -1 & 1 & 2 \\
0 & 1 & 1 & -1 & 3 \\
0 & 3 & 6 & 0 & 3
\end{array}\right] \\
& \underset{\substack{\text { Combine } \\
R_{3} \rightarrow R_{3}-3 R_{2}}}{ }\left[\begin{array}{cccc|c}
1 & 2 & -1 & 1 & 2 \\
0 & 1 & 1 & -1 & 3 \\
0 & 0 & 3 & 3 & -6
\end{array}\right] \xrightarrow[\substack{\text { scale } \\
R_{3} \rightarrow \frac{1}{3}}]{\underset{3}{\text { Sun }}}\left[\begin{array}{cccc|c}
1 & 2 & -1 & 1 & 2 \\
0 & 1 & 1 & -1 & 3 \\
0 & 0 & 1 & 1 & -2
\end{array}\right]
\end{aligned}
$$

The last mataix represent the system

$$
\left\{\begin{aligned}
x_{1}+2 x_{2}-x_{3}+x_{4} & =2 \\
x_{2}+x_{3}-x_{4} & =3 \\
x_{3}+x_{4} & =-2
\end{aligned} \quad \text { \#yuo wons |A}=0\right.
$$

We solve from bottum T_{0} Top using x_{4} as the free parameter (\# parameters $=4-3=1$) Indeed, for any choice of $x_{4}=t$ a rual number, we get a solution:

$$
\begin{aligned}
& x_{3}=-2-t ; x_{2}=3-x_{3}+x_{4}=3-(-2-t)+t=5+2 t \\
& x_{1}=2-2 x_{2}+x_{3}-x_{4}=2-2(5+2 t)+(-2-t)-t=-10-6 t
\end{aligned}
$$

so we have infinitely many solutions

$$
\begin{aligned}
& x_{1}=-10-6 t \\
& x_{2}=5+2 t \\
& x_{3}=-2-t \quad{ }^{2} t \operatorname{tin} \mathbb{R} \\
& x_{4}=t
\end{aligned}
$$

GAUSS-JORDAN ELimINATION: Input: Limar System
Output: Solution set

- Step 1: Write the angruented matuix B of the imput
- Step 2: Use Elementary Row operatimes togo from B To a matrix B^{\prime} in echelon from.
- Step 3: Solor the system assriated to B'from bstaon to top.

