Lecture III: §1.2 Gauss-Jrdan Elimination
Recall: Last Time we horned how to encode a limeorsystom into a matrix (A|b) called its augmented matrix. We listed three elementary equations which do not change the set of solutions of a lima system

$$
\begin{aligned}
& B=\left[\begin{array}{llll|l}
0 & 1 & 4 & 2 & 3
\end{array} 1\right. \\
& \xrightarrow[R_{1} \rightarrow R_{1}-3 R_{2}]{\text { Combine }}\left[\begin{array}{lllll|l}
0 & 1 & 4 & 2 & 0 & -2 \\
0 & 0 & 0 & 0 & 1 & 1 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right]\left\{\begin{array}{ccc}
x_{1}+4 x_{2}+2 x_{3}=-2 & m>x_{1}=-2-4 x_{2}+2 x_{3} \\
x_{4}=1 & x_{4}=1
\end{array}\right. \\
& \mu m>\text { Solutions: } \begin{array}{l}
x_{1}=-2-4 s+2 t \quad s, t \text { real } \\
x_{2}=5 ; x_{3}=t \quad \text { members } \\
x_{4}=1
\end{array}
\end{aligned}
$$

- Shatigy: simplify the input system by elementary operations by turning it into one in (reduced) echelon form.
- TODAY: we will see that this strategy always works, ie, any matrix can be put on (reduced) echelon form using the 3 elementary operations.

Algrithm: System a ms $B=[A \mid b]$

§1 Gauss-Jordan Elimination:
Main Theorem Any matrix B can be put in reduced echelon form using the 3 elementary row operations. We find the rut put undixx using

Sketch of Gauss - Tran Algorithm:

- $B \rightarrow E(B)$: More form $T_{0 p}$-left σ_{0} bottom-right T_{0} get the staircase shape, rescaling To stor each nu zen now with ones. Swap to put all O's rows at the bottom
 pivot Repear columns from right to left
Examples (1) $B=\left[\begin{array}{cc}(1) & 3 \\ 4 & 10\end{array}\right] \xrightarrow[\substack{R_{2} \rightarrow R_{2}-4 R_{1}}]{\text { Comb }}\left[\begin{array}{cc}1 & 3 \\ 0 & -2\end{array}\right] \xrightarrow[R_{2} \rightarrow \frac{R_{2}}{-2}]{\text { scale }^{R_{2}}}\left[\begin{array}{ll}1 & 3 \\ 0 & 1\end{array}\right]=E(B)$

$$
P Q(B)=?\left[\begin{array}{ll}
1 & 3 \\
0 & 1
\end{array}\right] \underset{R_{1} \rightarrow R_{2}-(3)}{ },\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]=R \xi(B)
$$

(2)

$$
B=\left[\begin{array}{cccc}
01 & 1 & -1 & 1 \\
27 & -1 & 7 & 8 \\
{[-1} & 1 & -5 & -5
\end{array}\right] \xrightarrow[\substack{ \\
R_{2} \rightarrow R_{2}-\left(2 R_{1} \\
R_{3} \rightarrow R_{3}-\left((-1) R_{1}\right.\right.}]{\substack{\text { Combine } \\
0}}\left[\begin{array}{cccc}
1 & 1 & -1 & 1 \\
0 & -3 & 9 & 6 \\
2 & -6 & -4
\end{array}\right]
$$

Tum - 3 m To a) by scaling
next: fix this pat

$$
\begin{aligned}
& \xrightarrow[R_{1} \rightarrow R_{1}-R_{2}]{\text { Cgnbine }}\left[\begin{array}{cccc}
1 & 0 & 2 & 3 \\
0 & 1 & -3 & -2 \\
0 & 0 & 0 & 0
\end{array}\right]=\dot{\beta} \tilde{\theta}(B)
\end{aligned}
$$

GAUSS-JORDAN ALGORITHM:
Input: $B=[A \mid B]$
m rows $n+1$ columns
Output: $B^{\prime}=\left[A^{\prime} \mid b^{\prime}\right]$
STEP 0: If B has all zero entries, then $B^{\prime}=B$
STEP 1: Pick the fist (left-mot) column with a moses entry (cal lit j)
[Find Column]
STEP 2: Exchange Rows so that the $j^{\text {th }}$ column has $a_{1 j} \neq 0$ (non zero [Swap Rows] entry in row 1)
STEP 3: If $\alpha=a_{1 j}$, then do $R_{1} \longrightarrow \frac{1}{\alpha} R_{1}$ (after this, the [Rescale Step] nu w value of $a_{1 j}=1$)
STEP 4: Replace each nagger now R_{i} for iss with $R_{i} \rightarrow R_{i}-a_{i j} R_{1}$
[Combine Step]

STEP5: Ran steps 0 To 4 for the smaller matrix $B^{\prime \prime}$ until we get [ItenativeStep] an echelon from matrix. Call it $\xi(B)$.

STEP 6: Wry on way backurands To put o's in Top of each 1 [From EF To REF] stating a nonzero now of $\%(B)$ (using (combine Operation), fixing columns from right to left. The resulting matrix is $B^{\prime}=P Q(B)$.

fix THESE FIRST and then more To the location of the 1 starting the precious now
§2. Solving REF systems:
Next GOALS: (1) Determine when a system has:

- no solution ("inconsistent")
- unique solution \quad - infinitely many solutions $\}$ ("consistent")
(2) If ∞-many solutions, write the solutives in parametric form.

Obsenstions: (1) If the matrix $R \xi(B)$ contains the following sow $\left[\begin{array}{llll}0 & \cdots & 0 & 1\end{array}\right]$
then, the corvespuching system has no solutions
(Why? Such now correspmes T_{0} the eqn: $0 \cdot x_{1}+\ldots+0 \cdot x_{n}=1$, so $0=1$)
(2) The variables corresponding to columns of A^{\prime} containing pivoted 's (ie the corners of our starcose) are called dependent variables.
(3) The variables that are not dependent are called independent
(or free parameters)
Examples (1) $B=\left[\begin{array}{ccc|c}1 & 1 & -1 & 1 \\ 2 & -1 & 7 & 8 \\ -1 & 1 & -5 & -5\end{array}\right] \leadsto \operatorname{RO}(B)=\left[\begin{array}{ccc|c}1 & 0 & 2 & 3 \\ 0 & 1 & -3 & -2 \\ 0 & 0 & 0 & 0\end{array}\right]$

- Wo now $\left[\begin{array}{llll}0 & 0 & 0 & 1\end{array}\right]$, so the system is cmsistent!
- Dependent Variables: $x_{1} \& x_{2}$, Freeparancter: x_{3}

The system represented by $B_{B}(B)$ is $\left\{\begin{array}{c}x_{1}+2 x_{3}=3 \\ x_{2}-3 x_{3}=-2\end{array}\right.$ $x_{3}=t$ free parameter $m>\left\{\begin{array}{l}x_{1}=3-2 t \\ x_{2}=-2+3 t \\ x_{3}=t\end{array}\right.$ are all the solutives To the system represented by B.

$$
\begin{aligned}
& \text { (2) }\left\{\begin{array}{l}
x_{1}+x_{2}-x_{5}=1 \\
x_{2}+2 x_{3}+x_{4}+3 x_{5}=1 \\
x_{1}-x_{3}+x_{4}+x_{5}=0
\end{array}\right. \\
& \text { Determine whether the system is consistent } r \text { not. } \\
& B=\left[\begin{array}{ccccc|c}
(1) & 1 & 0 & 0 & -1 & 1 \\
0 & 1 & 2 & 1 & 3 & 1 \\
1 & 0 & -1 & 1 & 1 & 0
\end{array}\right] \xrightarrow[R_{3} \rightarrow R_{3}-R_{1}]{\text { Combine }}\left[\begin{array}{ccccc|c}
1 & 1 & 0 & 0 & -1 & 1 \\
0 & 1 & 2 & 1 & 3 & 1 \\
0 & -1 & -1 & 1 & 2 & -1
\end{array}\right] \\
& \xrightarrow[R_{3} \rightarrow R_{3}+R_{2}]{\text { Combine }}\left[\begin{array}{ccccc|c}
1 & 1 & 0 & 0 & -1 & 1 \\
0 & 1 & 2 & 1 & 3 & 1 \\
0 & 0 & 1 & 2 & 5 & 0
\end{array}\right]=\boldsymbol{\zeta}(B) \xrightarrow[R_{2} \rightarrow R_{2}-2 R_{3}]{\text { Combine }}\left[\begin{array}{ccccc|c}
1 & 1 & 0 & 0 & -1 & 1 \\
0 & 1 & 0 & -3 & -7 & 1 \\
0 & 0 & 1 & 2 & 5 & 0
\end{array}\right]
\end{aligned}
$$

$\xrightarrow[R_{1} \rightarrow R_{1}-R_{2}]{\text { Combine }}\left[\begin{array}{ccccc|c}11 & 0 & 0 & 3 & 6 & 0 \\ 0 & 1 & 0 & -3 & -7 & 1 \\ 0 & 0 & 1 & 2 & 5 & 0\end{array}\right]=R(B)$
Conclusion: The system is consistent ($\left[\begin{array}{lllll}0 & 0 & 0 & 0 & 1\end{array}\right]$ is NOT a now of 歌 $\left.\%(B)\right)$

- Free parameters: $X_{4} \& X_{5}$ m infinitely many solutimes! For ency choice $x_{4}=s$, we hare a solution
$x_{5}=t$
(2 numbers)

$$
\begin{aligned}
& x_{1}=-3 s-6 t \\
& x_{2}=3 s+7 t+1 \\
& x_{3}=-2 s-s t \\
& x_{4}=s \\
& x_{5}=t
\end{aligned}
$$

parametric form of AU solutions

