Lecture IV: $\S 1.3$ Consistent systems of linear equations
Last time: . We discussed Gauss-Jrdan Elimination (Row Reduction)

Main Results. B^{\prime} is unique. (we will see later why)

- The systems associated to $B \& B^{\prime}$ have the same solutions but the one in reduced echelon from (associated to B') is EASIER to solve.

ALGORITHM:

This is the

§ 1. Same terminology:
Definition: We say two linear system's are equivalent if they have the same set of solutions.

Definition: Two matrices $B_{1} \& B_{2}$ are said to be now equivalent if we con go from B_{1} to B_{2} by performing elementary row operations. Recall (from Lecture II), that elementary row operations are reversible Thus, fo example, if $B_{\mathcal{C}}\left(B_{1}\right)=O Q\left(B_{2}\right)$, then B_{1} and B_{2} are now equivalent. In fact, this is the orly way in which $B_{1} \& B_{2}$ can be now equivalent.

Example: $\quad B_{1}=\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right] \quad \& \quad B_{2}=\left[\begin{array}{cc}1 & 3 \\ -1 & 5\end{array}\right]$

$$
\begin{aligned}
& B_{1}=\left[\begin{array}{cc}
(1) & 2 \\
3 & 4
\end{array}\right] \underset{R_{2} \rightarrow R_{2}-3 R_{1}}{\longrightarrow}\left[\begin{array}{ll}
1 & 2 \\
0 & -2
\end{array}\right] \xrightarrow[R_{2} \rightarrow \frac{R_{2}}{-2}]{\longrightarrow}\left[\begin{array}{ll}
1 & 2 \\
0 & 1
\end{array}\right] \underset{R_{1} \rightarrow R_{1}-2 R_{2}}{\longrightarrow}\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] \\
& B_{2}=\left[\begin{array}{cc}
(1) & 3 \\
-1 & 5
\end{array}\right] \underset{R_{2} \rightarrow R_{2}+R_{1}}{\longrightarrow}\left[\begin{array}{ll}
1 & 3 \\
0 & 8
\end{array}\right] \underset{R_{2} \rightarrow \frac{R_{2}}{8}}{\longrightarrow}\left[\begin{array}{ll}
1 & 3 \\
0 & 1
\end{array}\right] \underset{R_{1} \rightarrow R_{1}-3 R_{2}}{\longrightarrow}\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]
\end{aligned}
$$

Conclusion: $B_{1} \& B_{2}$ are row equivalent.
§2. Solving systems:

- Limar systems are clasified into 2 types:
(1) Inconsistent. (no soluteins)

Test: $[0 \ldots 01]$ is a now of $\beta \mathcal{G}(B)$
(2) Consistent (1 or ∞-many solus)

$$
\left\{\begin{aligned}
& \text { - dependent variables } \leftrightarrow \text { starting } I \text { 's } \\
& \text { in } B \xi(B) \\
& \text {. indejend variables : rest }
\end{aligned}\right.
$$

- Infinitely many solutions $=$ we have at least 1 independent vas. + system is consistent
- Unique solution $=$ ALL variables ene dependent + system is consistent

Condusion: We can decide how many solutions a system has by booking at the matrix of the equivalent reduced system
Examples: (1) Solve $\left\{\begin{array}{l}2 x_{1}+3 x_{2}-4 x_{3}=3 \\ x_{1}-2 x_{2}-2 x_{3}=-2 \\ -x_{1}+16 x_{2}+2 x_{3}=16\end{array}\right.$
Sen: $B=\left[\begin{array}{rcc|c}2 & 3 & -4 & 3 \\ 1 & -2 & -2 & -2 \\ -1 & 16 & 2 & 16\end{array}\right] \xrightarrow[R_{1} \leftrightarrow R_{2}]{\longrightarrow}\left[\begin{array}{ccc|c}1 & -2 & -2 & -2 \\ 2 & 3 & -4 & 3 \\ -1 & 16 & 2 & 16\end{array}\right] \underset{\substack{R_{2} \rightarrow R_{2}-2 R_{1} \\ R_{3} \rightarrow R_{3}+R_{1}}}{\longrightarrow}$

$$
\left[\begin{array}{ccc|c}
1 & -2 & -2 & -2 \\
0 & 7 & 0 & 7 \\
0 & 14 & 0 & 14
\end{array}\right] \xrightarrow[R_{2} \rightarrow \frac{R_{2}}{7}]{ }\left[\begin{array}{ccc|c}
1 & -2 & -2 & -2 \\
0 & 1 & 0 & 1 \\
0 & 14 & 0 & 14
\end{array}\right] \xrightarrow[R_{3} \rightarrow R_{3}-14 R_{2}]{ }\left[\begin{array}{ccc|c}
1 & -2 & -2 & -2 \\
0 & 1 & 0 & 1 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

$$
\xrightarrow[R_{1} \rightarrow R_{1}+2 R_{2}]{ }\left[\begin{array}{ccc|c}
1 & 0 & -2 & 0 \\
0 & 1 & 0 & 1 \\
0 & 0 & 0 & 0 \\
\uparrow & \uparrow & &
\end{array}\right]
$$

no $\left[\begin{array}{llll}0 & 0 & 0 & 1\end{array}\right]$ now, so the system is insistent.
x_{1}, x_{2} are dependent variables
x_{3} is independent \leadsto infinitely many solutions.
Reduced system $\left\{\begin{array}{c}x_{1} x_{2}^{-2 x_{3}}=0 \\ x_{2}=1\end{array} \quad \leadsto x_{1}=2 x_{3}\right.$ $x_{2}=1$
Solutions: $\quad x_{1}=2 t$

$$
x_{2}=1
$$

$$
x_{3}=t
$$

where t is any real number

Later m: $\left(x_{1}, x_{2}, x_{3}\right)=(2 t, 1, t)=(0,1,0)+t(2,0,1)$
[Vector notation for the solutions]
in Echelon From

- [lllll $000 c c c \mid c h$ is a row of B^{\prime} so the original system is inconsistent because the reduced see is.

$$
\begin{aligned}
& \text { (2) Solve }\left\{\begin{array}{l}
2 x_{1}+3 x_{2}-4 x_{3}=3 \\
x_{1}-2 x_{2}-2 x_{3}=-2 \\
-x_{1}+16 x_{2}+2 x_{3}=0
\end{array}\right. \\
& \text { (coefficient matiox is the } \\
& \text { same as in EX (1)) } \\
& \text { Sown } B=\left[\begin{array}{rcc|c}
2 & 3 & -4 & 3 \\
1 & -2 & -2 & -2 \\
-1 & 16 & 2 & 0
\end{array}\right] \xrightarrow[R_{1} \leftrightarrow R_{2}]{\longrightarrow}\left[\begin{array}{ccc|c}
1 & -2 & -2 & -2 \\
2 & 3 & -4 & 3 \\
-1 & 16 & 2 & 0
\end{array}\right] \underset{\substack{R_{2} \rightarrow R_{2}-2 R_{1} \\
R_{3} \rightarrow R_{3}+R_{1}}}{\longrightarrow} \\
& {\left[\begin{array}{ccc|c}
1 & -2 & -2 & -2 \\
0 & 7 & 0 & 7 \\
0 & 14 & 0 & -2
\end{array}\right] \xrightarrow[R_{2} \rightarrow \frac{R_{2}}{7}]{ }\left[\begin{array}{ccc|c}
1 & -2 & -2 & -2 \\
0 & 1 & 0 & 1 \\
0 & 14 & 0 & -2
\end{array}\right] \xrightarrow[R_{3} \rightarrow R_{3}-14 R_{2}]{ }\left[\begin{array}{ccc|c}
1 & -2 & -2 & -2 \\
0 & 1 & 0 & 1 \\
0 & 0 & 0 & -16
\end{array}\right]} \\
& \xrightarrow[R_{3} \rightarrow \frac{R_{3}}{-16}]{ }\left[\begin{array}{ccc|c}
1 & -2 & -2 & -2 \\
0 & 1 & 0 & 1 \\
0 & 0 & 0 & 1
\end{array}\right]=B^{\prime} \\
& \text { New system : }\left\{\begin{aligned}
x_{1}-2 x_{2}-2 x_{3} & =-2 \\
x_{2} & =1 \\
0 & =1
\end{aligned}\right.
\end{aligned}
$$

Obsenstion: We peffrm the same now operations in both examples because the coefficient matrix is the same!
We can solve both systems at the same Time, by working with

$$
\left[\begin{array}{l|c|c|c}
A & \text { b for } & \text { b fro } \\
& \text { system 1 } & \text { system 2 }
\end{array}\right]=\left[\begin{array}{ccc|c|c}
2 & 3 & -4 & 3 & 3 \\
1 & -2 & -2 & -2 & -2 \\
-1 & 16 & 2 & 16 & 0
\end{array}\right]
$$

(3)
$\left[\begin{array}{ccccc|c}0 & 1 & -1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 3 \\ 0 & 0 & 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right]$

- consistent
- 3 dependent variables: x_{2}, x_{4}, x_{5}
- 2 independent variables: x_{1}, x_{3},

So we have infinitely many solutions!
Solution: Row 3: $x_{5}=2$
Row 2: $x_{4}=3$
t, s ere real members
Row 1: $x_{2}=x_{3}=t$ (arbitrary)
x_{1} is the $x_{1}=s$
Vedr expression : $\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right)=(s, t, t, 3,2)$

$$
=s(1,0,0,0,0)+t(0,1,1,0,0)+(0,0,0,3,2)
$$

\$3. Homogeneous systems:
Definition: A system $\left\{\begin{array}{l}a_{11} x_{1}+\cdots+a_{1 n} x_{n}=b_{1} \\ \vdots \\ a_{m 1} x_{1}+\cdots+a_{m n} x_{n}=b_{m}\end{array}\right.$ is said to be
homopenerses if $b_{1}=b_{2}=\ldots=b_{n}=0$.
Observation: Homogeneous systems an always consistent, since $x_{1}=x_{2}=\cdots=x_{n}=0$ is certainly a solution. We call it the Trivial solution.
So homogeneous systems have either 1 or co-many solutions.

$$
\begin{aligned}
& \text { Example: : }\left\{\begin{array}{l}
2 x_{1}+3 x_{2}-4 x_{3}=0 \\
x_{1}-2 x_{2}-2 x_{3}=0 \\
-x_{1}+16 x_{2}+2 x_{3}=0
\end{array}\right. \\
& B=\left[\begin{array}{ccc|c}
2 & 3 & -4 & 0 \\
1 & -2 & -2 & 0 \\
-1 & 16 & 2 & 0
\end{array}\right] \xrightarrow[R_{1} \leftrightarrow R_{2}]{ }\left[\begin{array}{ccc|c}
1 & -2 & -2 & 0 \\
2 & 3 & -4 & 0 \\
-1 & 16 & 2 & 0
\end{array}\right] \xrightarrow[\substack{R 2 \rightarrow R_{2}-2 R_{1} \\
R_{3} \rightarrow R_{3}+R_{1}}]{\longrightarrow}
\end{aligned}
$$

$\underline{\text { Solutions: }}\left\{\begin{array}{l}x_{1}=2 x_{3} \\ x_{2}=0\end{array} \quad \leadsto\left(x_{1}, x_{2}, x_{3}\right)=x_{3}(2,0,1)\right.$
no $\left[\begin{array}{llll}0 & 0 & 0 & 1\end{array}\right]$ now, so the system is insistent.
, X_{1}, X_{2} dependent variables
§ 4. Consuprences of Gauss - Jordan:
(1) A linear system has 0,1 r ∞-many solutions
(2) If \# equations $<$ \# variables, the linear system cannot has a unique solution
(Reason: \# dependent variables $\leqslant \#$ epis $<\#$ variables, so we will have at least one independent variable)

