Lecture V : $\$ 1.3$ Consequences At Gauss-Jrdan \$1.5 Matrix Operations
§1. Consequences of Gauss-Jrdan:
(1) A linear system has $0,1 \pi$-many solutions
(2) If \# equations $<$ variables, the linear system cannot has a unique solution
(Reason: \# dependent variables $\leqslant \#$ epis $<\#$ variables, so we will have at least one independent variable)

Definition: Assume the matux B^{\prime} is in reduced echelon form. We define $\operatorname{Rank}\left(B^{\prime}\right)=C=\#$ nonzero nous of $B^{\prime}=\#$ dependent vars.

Fr arbitrary matrices $B \quad \operatorname{Rank}(B)=\operatorname{Rank}\left(B^{\prime}\right)$ where B^{\prime} is the unique reduced echelon from materix equivalent to B.

Consequences: (1) $\operatorname{Rank}\left(B^{\prime}\right) \leqslant m=\#$ wows of B^{\prime}
(2) $\operatorname{Rank}\left(B^{\prime}\right) \leqslant n+1=\#$ columns of B^{\prime}
(3) Rank $\left(B^{\prime}\right) \leqslant n$ if the system is consistent
(4) \#Free parameters $=n$-hank $\left(B^{\prime}\right)$, so we have a unique solution if and my if the system is consistent \& $\operatorname{Rank}\left(B^{\prime}\right)=n$.
(note that $n \leqslant m$ by (I))

If B^{\prime} has $[0, \ldots 0,1]$ an a now, we are inconsistent. This mans by on assumptions that the right-must stating 1 is within the first n columns. The staircase shape fries $r \leqslant n$.

consistent

inconsistent
§2. Operations in Matrices: \quad Matrices $=$ uctangelar arrays of members Addition
NEXT GOALS: (1) Define 3 operations n matrices \longrightarrow Scalar Multiplication Multiplication
(these 3 will be used To define abstract rectors spaces)
(2) Study the algebra behind these operations (rules that will help us compute faster, like we do with $+8 x$ in \mathbb{R})
Application : We can write limes systems $\left\{\begin{array}{l}a_{11} x_{1}+\ldots+a_{1 n} x_{n}=b_{1} \\ \vdots \\ a_{m 1} x_{1}+\ldots+a_{m n} x_{n}=b_{m}\end{array}\right.$
using matrix multiplication $\underset{m \times n \underline{n}}{A}\left[\begin{array}{l}x_{1} \\ \dot{x}_{n} \\ \dot{x}_{n}\end{array}\right]=\left[\begin{array}{l}b_{1} \\ b_{m} \\ \dot{b}_{m \times 1}\end{array}\right] \quad A=\left(a_{i j}\right)_{\substack{1 \leqslant i \leqslant n \\ 1 \leqslant j \leqslant m}}^{\substack{x_{1} \\ m}}$
Definition: Two matrices are equal when they have the same size \& the same entries. More explicitly:
if $\left.A=\left(a_{i j}\right)_{1 \leq i \leq m} \quad \& \quad B=\mid b_{i j}\right)_{1 \leq i \leq s}$ an two matrices
of sizes $m \times n \quad \& \quad r \times s$, respectively then $\quad A=B$ means $m=r, n=s$ and $a_{i s}=b_{i j}$ fo ency $i=1, \cdots, m$ \& $j=1, \cdots, n$

Examples: $\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right] \neq\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right]$ because $(1,2)$ entries den't ague
$\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0\end{array}\right] \neq\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$ because the number of columns is
Definition: A scalar is a number (real r complex)

- Next we define addition and scalar multiplication, and sturdy their properties.
§3. Matrix Addition a Scalar Multiplication:
- Fix two matrices $A \& B$ of the same size. We want to build a new matrix $A+B$
Definition 1: If $A \& B$ have sing $m \times n$, then $A+B$ is a motion of size $m \times n$ with entries $(A+B)_{i, j}=A_{i j}+B_{i j}$

$$
1 ァ i=1, \ldots, m \quad \begin{gathered}
\text { (add entry by } \\
j=1, \ldots, n
\end{gathered} \quad \text { entry) }
$$

Examples: (1) $\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]+\left[\begin{array}{ll}3 & 1 \\ 2 & 0\end{array}\right]=\left[\begin{array}{ll}1+3 & 0+1 \\ 0+2 & 1+0\end{array}\right]=\left[\begin{array}{ll}4 & 1 \\ 2 & 1\end{array}\right]$
(2) $\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]+\left[\begin{array}{lll}1 & 0 & 1 \\ 0 & 1 & 1\end{array}\right]$ is wot defined (the matrices have different sizes!

- Given a matrix A and a scalar r we want to build a new matrix rA

Definition 2: If A has size $m x_{n}$, then the scalar porduct $r A$ is a matrix of size $m \times n$ with entries $(r A)_{i j}=r A_{i j} f \rightarrow i=1, \ldots, m$ (multiply all entries by r)
Example $2\left[\begin{array}{ll}1 & 3 \\ 0 & 1\end{array}\right]=\left[\begin{array}{ll}2.1 & 2.3 \\ 2.0 & 2.1\end{array}\right]=\left[\begin{array}{ll}2 & 6 \\ 0 & 2\end{array}\right]$
§4. Matrix multiplication:

- Next, we depress multiplication of matrices. We will discuss the definition a do some examples. Next Time, we will see why this is the "right depmitim".
Idea:

Definition: Given $A=\left(a_{i j}\right) \quad m \times n$ matiox, the product $A \cdot B$

$$
B=\left(b_{i j}\right) \quad r \times s
$$

is poly defined when $n=r \quad(\# \operatorname{cols} A=\#$ rows $B)$. Assuming this is the case, then $A \cdot B$ is a matrix of size $m \times s$ with entries $\quad(A \cdot B)_{i j}=a_{i 1} b_{1 j}+a_{i 2} b_{2 j}+\cdots+a_{i n} b_{n j}$

$$
=\sum_{k=1}^{n} a_{i k} b_{k j} \quad \text { (summation notation) }
$$

Pictorially: To get $(i, j)^{\text {th }}$ entry of $A \cdot B$, we forms on the ith wow of A \& the $j^{\text {th }}$ column of B

$$
\left[\begin{array}{llll}
a_{i 1} & a_{i 2} & \cdots & a_{i n}
\end{array}\right]
$$

$$
\left[\begin{array}{c}
b_{1} j \\
\tilde{b}_{2} j \\
\vdots \\
b_{n j}
\end{array}\right] \text {. We nuelliply the conesprading }
$$

entries \& add them up:
$m a_{i 1} b_{1 j}+a_{i 2} b_{2 j}+\cdots+a_{i n} b_{n j}=(i j)$ entry of $A B$

Examples: (1) $\left[\begin{array}{lll}1 & 0 & 3 \\ 1 & 2 & 1\end{array}\right] \cdot\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$ is NOT defined

$$
2 \times 3 \quad 2 \times 2
$$

(2) $\left[\begin{array}{lll}1 & 0 & 3 \\ 1 & 2 & 1 \\ 2 \times 3\end{array}\right]\left[\begin{array}{ccc}1 & -1 & 3 \\ 0 & 2 & 7 \\ -2 & 4 & 5\end{array}\right]$

$$
2 \times 3 \quad 3 \times 3
$$

$$
\text { - }(1,1) \text { entry: }\left[\begin{array}{lll}
1 & 0 & 3
\end{array}\right]\left[\begin{array}{c}
1 \\
0 \\
-2
\end{array}\right]=1 \cdot 1+0 \cdot 0+3 \cdot(-2)=-5
$$

$$
\begin{aligned}
& \cdot(1,2)-\left[\begin{array}{lll}
1 & 0 & 3
\end{array}\right]\left[\begin{array}{c}
-1 \\
2 \\
4
\end{array}\right]=1 \cdot(-1)+0 \cdot 2+3 \cdot 4=-1+12=11 \\
& \cdot(1,3)-\left[\begin{array}{lll}
1 & 0 & 3
\end{array}\right]\left[\begin{array}{l}
3 \\
7 \\
5
\end{array}\right]=1 \cdot 3+0 \cdot 7+3 \cdot 5=3+15=18
\end{aligned}
$$

similarly, we cam compute the $(2,1),(2,2) \&(2,3)$ entries.
Result: $\left[\begin{array}{lll}1 & 0 & 3 \\ 1 & 2 & 1\end{array}\right]\left[\begin{array}{ccc}1 & -1 & 3 \\ 0 & 2 & 7 \\ -2 & 4 & 5\end{array}\right]=\left[\begin{array}{ccc}-5 & 11 & 18 \\ -1 & 7 & 22\end{array}\right]$
Note: The fromilo fo each entry of $A \cdot B$ is exactly how we define dot products m $\mathbb{R}^{2} \& \mathbb{R}^{3}$. This is mure general:

