Lecture	VI: \$1.6 Alzebraic properties of m	rateix operations
Last time: we defined	additin, scalar nultiplication e	product of matrices
Operation	Input	Output
() Addition	Two matrices A = (aij) and B = (bij) of the <u>same size</u> (mxn)	A+B : an m×n motux with (A+B)ij = Aij+Bij
Scalar Nutti plication	λ : a number A = (aij) an man matrix	$\lambda A = matrix of$ Size man with (AA); = λAi ;
3 Product	Two motices A = (aij) mxn B = (bij) nxs (# cols(A) = # nous(B))	AB = materix of size m xs #norus(A) #cols(B) (*)
(AB) čj	$= \operatorname{ain} \operatorname{bij} + \operatorname{aiz} \operatorname{bzj} + \cdots =$ $= [i^{\text{th}} \operatorname{now} \operatorname{sA}] [j^{\text{th}}]$ $\operatorname{column}_{\operatorname{sB}}$	+ qinbnj
Warm up: A m: a column rector of $A \times = \times_1$ General case: A	xn , $X = n \times 1$ (where next size m. $col_1(A) + x_2 col_2(A) + \cdots$ $m \times n$, $B n \times S \dots > C$	\bar{x}) m $A \cdot \underline{x}$ is $+ x_n \operatorname{col}_n(A)$ $al_j(AB) = A \cdot \operatorname{col}_j(B)$

$$\frac{Example}{2} : A = \begin{bmatrix} 1 & 2 & 3 \\ 0 & 1 & -1 \end{bmatrix} \quad B = \begin{bmatrix} 0 & 4 & 1 & 0 \\ 0 & 5 & 1 & 0 \end{bmatrix}$$
(1) BA is NOT defined (virus ou in compatible)
(2) AB is a 2x4 matrix $= \begin{bmatrix} -2 & 23 & 6 & 20 \\ -1 & -1 & 0 & 10 \end{bmatrix}$
(d, (AB) = A (d, (B) = $\begin{bmatrix} -2 \\ -1 \end{bmatrix}$
(d, (AB) = A (d, (B) = $\begin{bmatrix} -2 \\ 4 & -5 \end{bmatrix} = \begin{bmatrix} 23 \\ -1 \end{bmatrix}$
(d, (AB) = A (d, (B) = $\begin{bmatrix} 6 \\ 0 \end{bmatrix}$
(d, (AB) = A (d, (B) = $\begin{bmatrix} 6 \\ 0 \end{bmatrix}$
(d, (AB) = A (d, (B) = $\begin{bmatrix} 20 \\ 10 \end{bmatrix}$
(e) (AB) = A (d, (B) = $\begin{bmatrix} 20 \\ 10 \end{bmatrix}$
(e) (AB) = A (d, (B) = $\begin{bmatrix} 20 \\ 10 \end{bmatrix}$
(f) (AB) = A (d, (B) = $\begin{bmatrix} 20 \\ 10 \end{bmatrix}$
(g) : Why this definition?
A1: Nia algebraic properties (mext!)
A2: Allows for fast substitution (composition of linear functions)
Ex: Combine $\begin{cases} 1 = 3 & 9_1 - 9_2 + 9_3 \\ 2 = -3 & 9_1 + 5 & 9_2 \end{cases}$
(into a simple linear system in (21, 22, 23)
Use $\begin{bmatrix} 1 \\ 2 \end{bmatrix} = \begin{bmatrix} 3 & -1 & 1 \\ -3 & 5 & 0 \end{bmatrix} \begin{bmatrix} 9_1 \\ 9_2 \\ 9_3 \end{bmatrix} = \begin{bmatrix} -4 & 01 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 21 \\ 22 \\ 23 \end{bmatrix}$
(include that $\begin{cases} 1 = -122, -22 + 42_3 \\ 2 = 122 + 152_2 -82_3 \end{cases}$

§ z. Al gebraic Properties SLOGAN: Matrix operations are almost as nice as operations in TR Thurem 1: A, B, C mxn materises. Then: () [lammutative] A+B=B+A (2) [Associative] (A+B) + C = A+(B+C) (3) [Neutral Element] The zero mature () of size mon (all entries an o) satisfies A + 0 = 0 + A = 0 for all motions A of size mxn (4) [Additive Inverse] given A , the matrix P of size man with mtries Pij = - Aij frallij solve the materix equation in P A + P = P + A = 0.Q Why is this true? A: Addition for matrices is done entry-by-entry & these projecties an true in R. (= 1×1 matrices) Obs: O is sometimes denoted by Oman if the size is not clear. Definition. The Identity Matrix of size nxn (denoted by In) is the square matrix with 1's in the diagonal and O's elsewhere. $\mathbf{I}_{n} = \begin{bmatrix} \mathbf{i}_{0} & \cdots & \mathbf{0} \\ \vdots & \vdots \\ 0 & \cdots & 0 \end{bmatrix}$ Ex \mathbf{I}_{i} $\mathbf{E}_{n} = \begin{bmatrix} \mathbf{i}_{i} & \cdots & \mathbf{i}_{n} \\ 0 & \cdots & \mathbf{i}_{n} \end{bmatrix}$ \mathbf{E}_{n} \mathbf{I}_{i} $E_{X} \quad T_{Z} = \begin{bmatrix} 10\\ 01 \end{bmatrix}, \quad T_{3} = \begin{bmatrix} 100\\ 010\\ 001 \end{bmatrix}$