Lecture VI: §1.6 Algebraic properties of matrix operations
Last time: we defined addition, scalar multiplication a product of matrices

(A) Formula:

$$
\begin{aligned}
\therefore(A B)_{i j} & =a_{i 1} b_{1 j}+a_{i 2} b_{2 j}+\cdots+a_{i n} b_{n j} \\
& =\left[i^{\text {th }} \text { now of } A\right]\left[\begin{array}{c}
\text { jo } \\
\text { column } \\
\text { of }
\end{array}\right]
\end{aligned}
$$

Warmup: A $m \times n, \underline{x}=n \times 1$ (coleman rector) ma $A \cdot \underline{x}$ is a colum rector of size m.

$$
A \underline{x}=x_{1} \operatorname{col} 1(A)+x_{2} \operatorname{col}_{2}(A)+\cdots+x_{n} \operatorname{col}_{n}(A)
$$

General case: $A m \times n, B n \times s \leadsto \operatorname{Col}_{j}(A B)=A \cdot \cot _{j}(B)$

Example: $A=\left[\begin{array}{ccc}1 & 2 & 3 \\ 0 & 1 & -1\end{array}\right] \quad B=\left[\begin{array}{cc:c}0 & 0 & 0 \\ -1 & 4 & 10 \\ 0 & 5 & 1 \\ 0\end{array}\right]$
(1) $B A$ is NoT defined (sizes are incompatible)
(2) $A B$ is a 2×4 matrix $=\left[\begin{array}{llll}-2 & 23 & 6 & 20 \\ -1 & -1 & 0 & 10\end{array}\right]$

$$
\begin{aligned}
& \operatorname{col}_{1}(A B)=A \quad \operatorname{col}(B)=\left[\begin{array}{c}
-2 \\
-1
\end{array}\right] \\
& \cot _{2}(A B)=A \cot _{2}(B)=\left[\begin{array}{c}
4.2+3.5 \\
4-5
\end{array}\right]=\left[\begin{array}{c}
23 \\
-1
\end{array}\right] \\
& \cot _{3}(A B)=A \operatorname{col}_{3}(B)=\left[\begin{array}{c}
6 \\
0
\end{array}\right] \\
& \cot _{4}(A B)=A \operatorname{col}_{4}(B)=\left[\begin{array}{l}
20 \\
10
\end{array}\right]
\end{aligned}
$$

Q: Why this defimitim?
A1: Nice algebraic properties (next!)
A2: Allows for fast substitution (composition of linear functions)
Ex: Combine $\left\{\begin{array}{l}1=3 y_{1}-y_{2}+y_{3} \\ 2=-3 y_{1}+5 y_{2}\end{array} \&\left\{\begin{array}{l}y_{1}=-4 z_{1}+z_{3} \\ y_{2}=z_{2}-z_{3} \\ y_{3}=0\end{array}\right.\right.$
into a simple linear system in $\left(z_{1}, z_{2}, z_{3}\right)$
Use $\left[\begin{array}{l}1 \\ 2\end{array}\right]=\left[\begin{array}{ccc}3 & -1 & 1 \\ -3 & 5 & 0\end{array}\right]\left[\begin{array}{l}y_{1} \\ y_{2} \\ y_{3}\end{array}\right] \quad \&\left[\begin{array}{l}y_{1} \\ y_{2} \\ y_{3}\end{array}\right]=\left[\begin{array}{ccc}-4 & 0 & 1 \\ 0 & 1 & -1 \\ 0 & 0 & 0\end{array}\right]\left[\begin{array}{l}z_{1} \\ z_{2} \\ z_{3}\end{array}\right]$
To get $\left[\begin{array}{l}1 \\ 2\end{array}\right]=\underbrace{\left[\begin{array}{ccc}3 & -1 & 1 \\ -3 & 5 & 0\end{array}\right]}\left[\begin{array}{ccc}-4 & 0 & 1 \\ 0 & 1 & -1 \\ 0 & 0 & 0\end{array}\right]\left[\begin{array}{l}z_{1} \\ z_{2} \\ z_{3}\end{array}\right]$.
Conduce that

$$
=\left[\begin{array}{ccc}
-12 & -1 & 4 \\
12 & 5 & -8
\end{array}\right]
$$

$$
\left\{\begin{array}{l}
1=-12 z_{1}-z_{2}+4 z_{3} \\
2=12 z_{1}+5 z_{2}-8 z_{3}
\end{array}\right.
$$

oz．Al gebraic Properties
SLOGAN：Matrix operators are almost as nice as operations in \mathbb{R}
Thusem 1：$A, B, C m \times n$ matrices．Then：
（1）［Commutative］$\quad A+B=B+A$
（2）［Associative］$(A+B)+C=A+(B+C)$
（3）［Neutral Element］The zeromatux O of size man（allentries an 0）statistics $A+0=0+A=0$ 伿 all mathias A of size $m \times n$
（4）［Additive Inverse］Given A ，the matrix P of size $m \times n$ with entries $P_{i j}=-A_{i j}$ foal i, j solve the matrix equation in P

$$
A+P=P+A=0 \text {. }
$$

Q why is this twee？
A：Addition for matrices is dore entry－by－entry \＆these projection ane the in $\mathbb{R} .(=|x|$ matrices $)$

Obs：O is sometimes denoted by $\mathcal{C}_{m \times n}$ if the size is not clear．

$$
O_{2 \times 3}=\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right] \quad \theta_{2 \times 2}=\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right]
$$

Definition：The Identity Matrix of size $n \times n$（denoted by I_{n} ） is the square matrix with i＇s in the diapmal and o＇s elsewhere．

$$
\text { Ex } I_{2}=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right], I_{3}=\left[\begin{array}{ll}
1 & 0 \\
0 & 0 \\
0 & 0 \\
0 & 1
\end{array}\right]
$$

$n \xrightarrow{\rightarrow}$ diagrual：(i, i) entries

Thusem 2: A of size $m \times n, B$ of size $n \times s$ \& C of size $s \times l$

(3) [Associative III] α scalar $\alpha(A B)=(\alpha A) B=A(\alpha B)$
(4) [Neutral Element] $A=A I_{m \times n}=I_{m \times n}{\underset{m}{m}}^{A}$

QWhy? A Explicit computation of each entry, once sizes have been determined (see textbook)
Next. Relate the 3 operations!
Thurem 3:
(1) [Distribution I] $F_{(x x} A, B$ of size $m \times n$, C of size $n \times s$. Then

$$
\underset{m \times n}{(A+B)} \underset{n \times s}{C}=\underset{m \times s}{A C}+\underset{m \times s}{B C} \quad m \times s \text { both sides }
$$

(2) [Distribution II] Fix A of size $m \times n, B, C$ of size $n \times s$. Then

$$
\underset{m \times n}{A(} \underset{m \times s}{ }(\underset{m \times s}{ }=\underset{m \times s}{A B}+\underset{m \times s}{A C} \quad m \times s \text { both sides }
$$

(3) [Distribution III] Fix α, β scalars, A of size $m \times n$. Then

$$
(\alpha+\beta) A=\alpha A+\beta A \quad m \times n \quad \text { both sides }
$$

(4) [Distribution IV] $F(x \propto$ scalar, A, B of size $m \times n$. Then $\underset{m \times n}{(A+B)}=\underset{m \times n}{\alpha A}+\underset{m \times n}{\alpha B} \quad m \times n$ both sides.

