Lecture VII: § 1.6 Algebraic properties of matrix operations The Euclidean space \mathbb{R}^{n}.
Last time: Discussed algebraic properties of addition, scalar melt. a product of matrices.
In particular: we have 2 Neutral Elements:
(1) For Addition: $O=\underset{(m \times n)}{\text { yeomatix }} \quad A=0+A=A+0 \quad A: m \times n$
(2) Fo Product: $I=I_{\text {(surety mater motion! })}=\left[\begin{array}{ccc}1 & 0 \\ 0 & 0 \\ \text { a } & 1\end{array}\right]$ s $\quad A=I_{m} A=A I_{n}$

TODAY: One more opectim = transpose

- Euclidean space \mathbb{R}^{n}
- Invertible matrices (writ. product)
§1. Transpose of a matrix;
IDEA: Transposing mans swapping the cole of rows \& columns.
Definition: Given a matrix A of size $m \times n$, the transpose of A is a matrix A^{\top} of size $n \times m$ with entries $\left(A^{\top}\right)_{i j}=A_{j i} \begin{aligned} & i=1, \ldots, n \\ & j=1, \ldots, m\end{aligned}$
Example $A=\left[\begin{array}{lll}1 & 2 & 3 \\ 4 & 5 & 0 \\ 2 \times 3\end{array}\right] \quad \ln A^{\top}=\left[\begin{array}{ll}1 & 4 \\ 2 & 5 \\ 3 & 0 \\ 3 \times 2\end{array}\right]$
Next, we show that this new operatic interacts sens well with the other 3 .
Theorem: Fix A, B of size $m \times n, C$ of size $n \times l$. Then
(1) $(A+B)^{\top}=A^{\top}+B^{\top}$ $n \times m$ both sides
(2) $\left(A^{\top}\right)^{\top}=A$ $m \times n$ " "
\rightarrow (3) ${\underset{l \times m}{(A C)^{\top}}=\underset{l \times n}{C^{\top} A^{\top}} \quad l \times m}_{A^{\top}}^{l \times m}$.

Q Why? A (1) \& (2) are easy to check. Let's discuss (3).

$$
\begin{aligned}
(A C)^{\top}=(A C)_{j i} & =A_{j 1} C_{1 i}+A_{j 2} C_{2 i}+\cdots+A_{j n} C_{n i} \\
\text { fl each } i=1, \ldots, l & =C_{1 i} A_{j 1}+C_{2 i} A_{j 2}+\cdots+C_{n i} A_{j n} \\
& =\left(C^{\top}\right)_{i 1}\left(A^{\top}\right)_{1 j}+\left(C^{\top}\right)_{i 2}\left(A^{\top}\right)_{2 j}+\cdots+\left(C^{\top}\right)_{i n}\left(A^{\top}\right)_{n j} \\
& =\left(C^{\top} A^{\top}\right)_{i j} .
\end{aligned}
$$

Definition: We say a matrix A is symmetric if $A^{\top}=A$
In particular A must be a square matrix $(m=n)$.
Why? Symunutic matrices are diagmalizable with real eigenvalues (later!)
Proposition: If A has size $m \times n$, them:
(1) $A A^{\top}$ is symmetric of size $m \times m$
(2) $A^{\top} A \longrightarrow n \times n$

Why? $A A^{\top}$ has size $m \times n$ \& $A_{m \times n} A^{\top} A \times m$ has size $m r^{m}$

$$
\left(A A^{\top}\right)^{\top} \underset{\substack{m \times n}}{\bar{\uparrow}} \underset{\text { by Therm }}{n \times m}\left(A^{\top}\right)^{\top} A^{\top} \underset{b_{1}}{\overline{1}}=A A^{\top} \text { Theorem } \quad \& \quad\left(A^{\top} A\right)^{\top}=A^{\top}\left(A^{\top}\right)^{\top}=A^{\top} A
$$

§2. Euclidean space \mathbb{R}^{n} \& Dot Product

- Addition \& scalar miltiplicatim match the usual operations fr vectors m $\mathbb{R}^{2}, \mathbb{R}^{3}$, ..
- We will wite solution to liner systems of m equations \& n unknowns as columns $\left[\begin{array}{c}x_{1} \\ \vdots \\ x_{n}\end{array}\right]$. We will denote the space of all such columns \mathbb{R}^{n} and call it Euclidean space of dimension x $\underset{\text { matrices }}{n \times 1}=\mathbb{R}^{n}=\left\{\vec{v}: \vec{v}=\left[\begin{array}{l}x_{1} \\ x_{2} \\ \dot{x}_{n}\end{array}\right]\right.$ when $x_{1}, x_{2}, \ldots, x_{n}$ are real members $\}$
- \mathbb{R}^{n} has 2 op cations : addition s scalar multiplication
- Extra operation in $\mathbb{R}^{n}=\operatorname{dot}$ product
- Dpmition: siren T_{0} rectors $\vec{v}=\left[\begin{array}{c}v_{1} \\ v_{2} \\ \vdots \\ v_{n}\end{array}\right]$ \& $\vec{u}=\left[\begin{array}{c}u_{1} \\ \vdots \\ u_{n}\end{array}\right]$ we define the dot product $\vec{v} \cdot \vec{u}$ as the purduct $\left[v_{1}, \ldots v_{n}\right]\left[\begin{array}{l}u_{1} \\ \vdots \\ u_{n}\end{array}\right]$ Using the Tanspse, we have $\vec{v} \cdot \vec{u}=\begin{aligned} & \vec{v} \\ & \begin{array}{l}1 \times n \\ u \times 1\end{array} \\ & \vec{u}\end{aligned}$.
- Dpmition The worm or magnitude of a vector \vec{v} in \mathbb{R}^{n} equals

$$
\|\vec{v}\|=\sqrt{\vec{v} \cdot \vec{v}}=\sqrt{v_{1}^{2}+\cdots+v_{n}^{2}}=\sqrt{\vec{v}^{\top} \vec{v}}
$$

We call it the Euclidean length of \vec{v}.
Example $\vec{x}=\left[\begin{array}{c}1 \\ 0 \\ -1\end{array}\right], \vec{y}=\left[\begin{array}{l}2 \\ 1 \\ 3\end{array}\right]$

$$
\begin{aligned}
\vec{x}^{\top} \vec{y} & =\left[\begin{array}{lll}
1 & 0 & -1
\end{array}\right]\left[\begin{array}{l}
2 \\
1 \\
3
\end{array}\right]=1 \cdot 2+0 \cdot 1+(-1) \cdot 3=-1 \\
\cdot \vec{x}^{\top} \vec{x} & =\left[\begin{array}{lll}
1 & 0 & -1
\end{array}\right]\left[\begin{array}{c}
1 \\
0 \\
-1
\end{array}\right]=1^{2}+0^{2}+(-1)^{2}=1+1=2
\end{aligned}
$$

so $\|\vec{x}\|=\sqrt{2}$

$$
\left.\left.\begin{array}{rl}
\cdot \vec{y}^{\top} \vec{y} & =\left[\begin{array}{ll}
2 & 1
\end{array} 3\right.
\end{array}\right]\left[\begin{array}{l}
2 \\
1 \\
3
\end{array}\right]=2^{2}+1^{2}+3^{2}=14\right]\left[\begin{array}{l}
14 \\
\text { so }\|\vec{y}\|=\sqrt{14} \\
-\|\vec{x}-\vec{y}\|=\left\|\left[\begin{array}{c}
-1 \\
-4
\end{array}\right]\right\|=\sqrt{[-1,-1,-4]\left[\begin{array}{c}
-1 \\
-1 \\
-4
\end{array}\right]}=\sqrt{(-1)^{2}+(-1)^{2}+(-4)^{2}} \\
=\sqrt{18} .
\end{array}\right.
$$

- Advantage of \mathbb{R}^{n} structure: We can write solutions to linear systems in rector from:

We will wite it as $\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]=\left[\begin{array}{c}1+x_{3} \\ 3-x_{3} \\ 3\end{array}\right]=\left[\begin{array}{l}1 \\ 3 \\ 3\end{array}\right]+x_{3}\left[\begin{array}{c}1 \\ -1 \\ 0\end{array}\right]$
Note: $\left[\begin{array}{c}1 \\ -1 \\ 0\end{array}\right]$ solves the homogeneous system $\left\{\begin{array}{l}x_{1}-x_{3}=0 \\ x_{2}+x_{3}=0\end{array}\right.$
This is a general phenomenon!
Proposition: If an $m \times n$ system with augmented matrix $B=$ [All] is consistent, then the general from of a solution is

$$
\begin{aligned}
& \underset{\underset{x_{2}}{\prime \prime}}{\left[\begin{array}{c}
x_{1} \\
\vdots \\
x_{n}
\end{array}\right]} \underset{\stackrel{l}{p}}{\left[\begin{array}{c}
p_{1} \\
\vdots \\
p_{n}
\end{array}\right]}+ \\
& \text { General Solutim of the homogenions } \\
& \text { system with augmented maticx [A|O] } \\
& t_{1}[]+\cdots+t_{s}[] \quad s=\# \text { indiply }
\end{aligned}
$$

Why is thistrue? We know $\vec{A} \vec{x}=\vec{b}$ \& $A \vec{P}=\vec{b}$
Any rector $\vec{u}=\vec{x}-\vec{p}$ solves the assricted honggmions system.
since $A \vec{u}=A(\vec{x}-\vec{p})=A \vec{x}-A \vec{p}=\vec{b}-\vec{b}=\overrightarrow{0}$
Example $\left\{\begin{array}{l}x_{1}-x_{2}+2 x_{3}=0 \\ x_{4}-x_{5}=0\end{array}\right.$ x_{1}, x_{4} : dependent variables x_{2}, x_{3}, x_{5}. indeypudunt variables

$$
\left[\begin{array}{ccccc|c}
1 & -1 & 2 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & -1 & 0
\end{array}\right]
$$

REf

$$
\begin{aligned}
& x_{1}=x_{2}+2 x_{3} \\
& x_{4}=x_{5}
\end{aligned}
$$

$$
\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4} \\
x_{5}
\end{array}\right]=\left[\begin{array}{c}
x_{2}+2 x_{3} \\
x_{2} \\
x_{3} \\
x_{5} \\
x_{5}
\end{array}\right]=x_{2}\left[\begin{array}{l}
1 \\
1 \\
0 \\
0 \\
0
\end{array}\right]+x_{3}\left[\begin{array}{l}
2 \\
0 \\
0 \\
0 \\
0
\end{array}\right]+x_{5}\left[\begin{array}{l}
0 \\
0 \\
0 \\
0 \\
1 \\
1
\end{array}\right] \begin{gathered}
x_{2}, x_{3}, \\
x_{5} \\
x_{n} \\
\text { free form of the solution }
\end{gathered}
$$

\$3 Multiplication of numbers vs. matrices
(1) $a b=b a$ for numbers but $A B \neq B A$ for matrices

Example: $A=\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right] \quad B=\left[\begin{array}{ll}0 & 0 \\ 1 & 1\end{array}\right] \quad A B=\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right]$

$$
B A=\left[\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right]
$$

(2) $a b=0$ mams either $a=0$ r $b=0$ fr numbers but $A B=0$ coon hold with $A \neq C \& B \neq C$. (Example abore)
(3) $a \neq 0$ mans we can always find $b=\frac{1}{a}$ with $a b=1$ but there are nongus mathias (A) fo which $A B=I$ r $B A=I$ has no solution. (example above)

Example $A_{B}=\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right]$ Let us try to she $A B=I_{2}$

$$
\underbrace{\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right]\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]}_{=\left[\begin{array}{ll}
a & b \\
0 & 0
\end{array}\right]}=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]
$$

cannot be soled because of $(2,2)$ entry $(0 \neq 1)$ so no B can work!

Next time: Invertible matrices!

