Lecture VIII \$1.9 Matux Incuses
Recall $\cdot I_{n}=$ identity matrix of size $n \times n=\left[\begin{array}{cc}1 & 0 \\ 0 & \ddots\end{array}\right] \quad\left[I_{2}=\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right], I_{3}=\left[\begin{array}{ll}10 & 0 \\ 0 & 0 \\ 0 & 1\end{array}\right]\right.$

- If A is an $m \times n$ matrix $m A I_{n}=\operatorname{Im} A=A$
(Identity $\hookrightarrow \mid$ in \mathbb{R})
\$1 Multiplication of numbers vs. matrices
(1) $a b=b a$ for numbers but $A B \neq B A$ for matrices

Example: $A=\left[\begin{array}{c}10 \\ 00\end{array}\right] \quad B=\left[\begin{array}{l}0 \\ 11\end{array}\right]$

$$
\begin{aligned}
& A B=\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right] \\
& B A=\left[\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right]
\end{aligned}
$$

(2) $a b=0$ mans either $a=0$ r $b=0$ fr numbers but
$A B=0$ cosh hold with $A \neq C \& B \neq 0$. (Example abre)
(3) $a \neq 0$ mans we can allay find $b=\frac{1}{a}$ with $a b=1$
but there ane nongus matrices (A) fr which $A B=I$ or $B A=I$ has no solution. (example above) $I=\frac{\text { Identity }}{\text { metic }}$
Example $A=\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right] \quad$ Let us try to solve $A B=I_{2}$

$$
\underbrace{\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right]\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]}_{=\left[\begin{array}{ll}
a & b \\
0 & 0
\end{array}\right]}=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]
$$

cannot be soled becomes

$$
\text { of }(2,2) \text { entry }(0 \neq 1)
$$

so no B can work!
\$2. Invertible matrices:
Definition: An $n \times n$ matrix A is invertible if there exists an $n \times n$ matrix B satisfying $A \bar{B}=I_{n}=B A$.
Such a matrix B is called the "imserse of A " It is unique,
and we denote it by A^{-1}.
Q Why is it unique? A: If B, B^{\prime} are Two $n \times n$ matrices with

$$
\begin{aligned}
& A B=B A=I_{n} \& \quad A B^{\prime}=B^{\prime} A=I_{2} \text {, then } \\
& B=B I_{n} \underset{\sum_{i}}{=} B\left(A B^{\prime}\right)=(B A) B^{\prime}=I_{n} B^{\prime}=B^{\prime} . \\
& \text { use } I_{n}=A B^{\prime} \quad B A=I_{n}
\end{aligned}
$$

$11 A^{-1}$ dorsn't always exist (example above)
Example: (1) I_{n} is always invertible since $I_{n} I_{n}=I_{n}$ so $I_{n}^{-1}=I_{n}$
(2) $A=\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right]$ is invertible with $A^{-1}=\left[\begin{array}{cc}1 & -1 \\ 0 & 1\end{array}\right]$

Check: $A A^{-1}=\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right]\left[\begin{array}{cc}1 & -1 \\ 0 & 1\end{array}\right]=\left[\begin{array}{cc}1+0 & -1+1 \\ 0+0 & 0+1\end{array}\right]=\left[\begin{array}{l}1 \\ 0 \\ 0\end{array} 1\right]=I_{2}$

$$
A^{-1} A=\left[\begin{array}{cc}
1 & -1 \\
0 & 1
\end{array}\right]\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right]=\left[\begin{array}{cc}
1+0 & -1+1 \\
0+1 & 1+1
\end{array}\right]=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]=I_{2}
$$

Significance of insutible matrices for linear systems.
Proposition 1 : If $A\left[\begin{array}{l}x_{1} \\ \dot{x}_{n} \\ \dot{x}_{n}\end{array}\right]=\left[\begin{array}{l}b_{1} \\ b_{n} \\ b_{n}\end{array}\right]$ is a system with negus e n unknowns and A is insectible, then the system has a unique solution, namely $A^{-1}\left[\begin{array}{l}b_{1} \\ \dot{b}_{n}\end{array}\right]$
Why? - $A\left(A^{-1}\left[\begin{array}{c}b_{1} \\ \vdots \\ b_{n}\end{array}\right]\right)=\left(A A^{-1}\right)\left[\begin{array}{c}b_{1} \\ \vdots \\ b_{n}\end{array}\right]=I_{n}\left[\begin{array}{l}b_{1} \\ \vdots \\ b_{n}\end{array}\right]=\left[\begin{array}{l}b_{1} \\ 1 \\ b_{n}\end{array}\right]$ So it is a solution.

- It is the miiqee solution: $I f, A \underline{x}=\underline{b}$ multiply both sides by A^{-1} on the right :

$$
A^{-1}(A \underline{x})=A^{-1} \underline{b}
$$

But $A^{-1}(A \underline{x}) \stackrel{\substack{\operatorname{s} x}}{=}\left(A^{-1} A\right) \underline{x}=I_{n} \underline{x}=\underline{x}$
Conclude: $\underline{x}=A^{-1} \underline{b}$ is the orly solution to the system.
Observation: This is the most important feature of invertible matrices, which in fact characterizes tree, and allows us to compute A^{-1} using Gauss-Jodan Elimination. This will also show the conses of the assertion in P copssitim 1, namely
Papporition: Fix a matrix A of size $n \times n$. If excl liner system $A \vec{x}=\vec{b}$ ha a unique solution, then A is insutible.
Q Why?
A Build n converiecut linear systems by varying \vec{b}. We know by our hypothesis that these systems hose unique solutions.

$$
\text { Take } \vec{b} \text { to be } \underbrace{\vec{e}_{1}=\left[\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right], \vec{e}_{2}=\left[\begin{array}{l}
0 \\
1 \\
0 \\
0
\end{array}\right], \ldots, \vec{e}_{n}=\left[\begin{array}{l}
0 \\
\vdots \\
0 \\
0
\end{array}\right]}_{\text {called }}
$$

These are the columns of the identity matrix $\frac{T_{n}}{n}$.

- We build the solution rectors $\vec{x}_{1}=\left[\begin{array}{c}x_{11} \\ x_{21} \\ \vdots \\ \dot{x}_{n 1}\end{array}\right], \vec{x}_{2}=\left[\begin{array}{l}x_{12} \\ x_{22} \\ \vdots \\ x_{n 2}\end{array}\right], \ldots, \vec{x}_{n}=\left[\begin{array}{c}x_{11} \\ x_{2 n} \\ \vdots \\ x_{n n}\end{array}\right]$
to $A \vec{x}_{1}=\vec{e}_{1}, A \vec{x}_{2}=\vec{e}_{2}, \ldots, A \vec{x}_{n}=\vec{e}_{n}$, usp.
Then, $X=\left[\begin{array}{llll}\vec{x}_{1} & \vec{x}_{2} & \cdots & \vec{x}_{n}\end{array}\right]=\left[\begin{array}{ccc}x_{11} & \cdots & x_{1 n} \\ \vdots & & \\ x_{n 1} & \cdots & x_{n n}\end{array}\right]$ satisfies

$$
A X=A\left[\begin{array}{llll}
\vec{x}_{1} & \vec{x}_{2} & \cdots & \vec{x}_{n}
\end{array}\right]=\left[\begin{array}{lll}
A \vec{x}_{1} & \ldots & A \vec{x}_{n}
\end{array}\right]=\left[\begin{array}{llll}
\vec{e}_{1} & \vec{e}_{2} & \ldots & \vec{e}_{n} \\
& & &
\end{array}\right]=I_{n}
$$

Note: We still hare to cluck $X A=I_{n}$ as well, but we will see next time that this is automatic.

Q: What is $\operatorname{RE}(A)$ ir A of size $n \times n$ that has wiper solutions to any system $A \cdot \vec{x}=\vec{b}$?
Propsitim 3: $\operatorname{RE}(A)=I_{n}$, in particular $A \sim_{\text {now }} I_{n}$. Brook: $r=\operatorname{cank}(A)=\#$ nm-gro rows of $A . \leq n=$ Nous (A) - If $r<n$, then we hare at last if rue parameter for $\vec{x}=\overrightarrow{0}, s o$ we cannot have unique solutions.

- Conclusions: $r=n=\#$ columns of A. \& so erect step of the staircase $\Leftrightarrow[A \mid \overrightarrow{0}]$ has length $1 \ldots$

So $\quad R E(A)=\left[\begin{array}{cccc}1 & 0 & . . . \\ 0 & 1 & 0 \\ 0 & 1 & \cdots \\ 0 & & \ddots & 0\end{array}\right]=I_{n}$
This leads to an algorithm fo computing A^{-1} !
We need to solve all n systems $A \vec{x}_{1}=\vec{e}_{1}, A \vec{x}_{2}=\vec{e}_{2}, \ldots A \vec{x}_{n}-\vec{e}_{n}$ We can do this simmultanoously!
\$4. Algorithm for computing A^{-1} :
(1) Form the $n \times 2 n$ matrix $\left[A\left|\vec{e}_{1}\right| \vec{e}_{2}|\ldots| \vec{e}_{n}\right]=\left[A \mid I_{n}\right]$
(2) Use Gauss-Trdan elimination to get A into roducedform

Concede: Columns of B solve the n riginal systems

$$
A \operatorname{CR}_{1}(B)=\vec{e}_{1}, \ldots, A \operatorname{Col}(B)=\vec{e}_{n}
$$

In particular $\quad A B=I_{n}$
Next time: We'll see that $B=A^{-1}$, ie B also satisfies $B A=I_{n}$.
Ida: Since $\left[A \mid I_{n}\right] \sim_{n o w}\left[I_{n} \mid B\right]$ then $I_{n} \sim B$, and this will say B is invertible.

The same now operatives, will give $\left[B \mid I_{n}\right] \longrightarrow\left[I_{n} \mid A\right]$ (in nurse ed er)
fringe $B A=I_{n}$.
Example: $A=\left[\begin{array}{lll}1 & 3 & 1 \\ 2 & 5 & 1 \\ 0 & 0 & 1\end{array}\right] \quad$ Let's compute A^{-1}.

$$
\begin{aligned}
& {\left[A \mid I_{3}\right]=\left[\begin{array}{lll|lll}
1 & 3 & 1 & 1 & 0 & 0 \\
2 & 5 & 1 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 \\
0 & 1
\end{array}\right] \underset{R_{2} \rightarrow R_{2}-2 R_{1}}{\longrightarrow}\left[\begin{array}{ccc|ccc}
1 & 3 & 1 & 1 & 0 & 0 \\
0 & -1 & -1 & -2 & 1 & 0 \\
0 & 0 & 1 & 0 & 0 & 1 \\
0 & 0 & 1 & 1
\end{array}\right]}
\end{aligned}
$$

$$
\xrightarrow[R_{1} \rightarrow R_{1}-3 R_{2}]{ }\left[\begin{array}{ccc|ccc}
1 & 0 & 0 & -5 & 3 & 2 \\
0 & 1 & 0 & 2 & -1 & -1 \\
0 & 0 & 1 & 0 & 0 & 1
\end{array}\right]
$$

Check: $\left[\begin{array}{lll}1 & 3 & 1 \\ 2 & 5 & 1 \\ 0 & 0 & 1\end{array}\right]\left[\begin{array}{ccc}-5 & 3 & 2 \\ 2 & -1 & -1 \\ 0 & 0 & 1\end{array}\right]=\left[\begin{array}{ccc}-5+6 & 3-3 & 2-3+1 \\ -10+10 & 6-5 & 4-5+1 \\ 0 & 0 & 1\end{array}\right]=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$
Also $\left[\begin{array}{ccc}-5 & 3 & 2 \\ 2 & -1 & -1 \\ 0 & 0 & 1\end{array}\right]\left[\begin{array}{lll}1 & 3 & 1 \\ 2 & 5 & 1 \\ 0 & 0 & 1\end{array}\right]=\left[\begin{array}{ccc}-5+6+0 & -15+15 & -5+3+2 \\ 2-2 & 6-5 & 2-1-1 \\ 0 & 0 & 1\end{array}\right]=I_{3}$
Q: How did we know A wees invertible?
A We didn't! So far, our only test for innertibility is:
$A \leadsto \operatorname{RE}(A)=I_{n} ?$ yest A insutible
Later in the course we will have a different test, ria determinants $\operatorname{det}(A)$ is a number: $\operatorname{det}(A) \neq 0$ mans A is imsectible (A $n \times n$ matrix)
$\cdot \operatorname{det}(A)=0$ is NOT

