Lecture VIII \$1.9 Mature Innerses
Recall $I_n = identity matrix of singe nxn = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} J_2 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} J_3 = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$
\$1 Multiplication of numbers vs. matrices
(1) ab=ba for numbers but AB ≠ BA for matrices
Example A = $\begin{bmatrix} 10\\00 \end{bmatrix}$ B = $\begin{bmatrix} 00\\11 \end{bmatrix}$ AB = $\begin{bmatrix} 00\\00 \end{bmatrix}$ BA = $\begin{bmatrix} 0\\00 \end{bmatrix}$
(2) ab=0 mons either a=0 77 b=0 for numbers but
$AB = 0$ can hold with $A \neq 0 \leq B \neq 0$. (Example above)
(3) a to mans we can always find b=1 with ab=1
but there are nonzers matrices (A) for which AB=I or BA=I has no solution. (example above) I=Idutily matrix
Example $A = \begin{bmatrix} 10 \\ 00 \end{bmatrix}$ Let us try to solve $AB = I_2$
$\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} a & b \\ c & d \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ cannot be solved be cause of $(2, 2)$ entry $(0 \neq 1)$ so no B can work!
§ z. Invertible matrices.

Definition: An nxn matrix A is invertible if there exists an nxn matrix B satisfying $AB = I_n = BA$. Such a matrix B is called the "inverse of A" It is unique,

and we denote it by A". Q Why is it unique ? A: IFB, B' are two nxn matrices with $AB = BA = I_n \qquad AB' = B'A = I_z$, then $B = B I_n = B(AB') = (BA)B' = I_n B' = B'.$ use $I_n = AB'$ Assoc use $BA = I_n$ A' doesn't always exist (example above) Example: (1) In is always invertible since In In=In so $T_n' = T_n$ (z) $A = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$ is insertible with $A^{-1} = \begin{bmatrix} 1 - 1 \\ 0 \end{bmatrix}$ Unde: $AA^{-1} = \begin{bmatrix} 1 \\ 0 \end{bmatrix} \begin{bmatrix} 1-1 \\ 0 \end{bmatrix} = \begin{bmatrix} 1+0 & -1+1 \\ 0+0 & 0+1 \end{bmatrix} = \begin{bmatrix} 10 \\ 0 \end{bmatrix} = T_2$ $S^{T_{a}} = \begin{bmatrix} 1 & -1 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0$ Significance of insertible matrices for linear systems. Proprition1: IF A [xi] = [bi] is a system with neons & nunknowns and A is insertible, then the system has a unique solution namely A-1251 $= (AA^{-1}) \begin{bmatrix} b_{1} \\ b_{n} \end{bmatrix} = I_{n} \begin{bmatrix} b_{1} \\ b_{n} \end{bmatrix} = \begin{bmatrix} b_{1} \\ b_{n} \end{bmatrix}$ Why? • $A(A^{(b_1)})$

so it is a solution.

The is the inique solution. If,
$$A \ge b$$
 multiply both sides
by A^{-1} on the right: $A^{-1}(A \ge) = A^{-1}b$
But $A^{-1}(A \ge) = (A^{-1}A) \ge I_n \ge = x$
Conclude: $\ge = A^{-1}b = I_n \ge = x$
Conclude: $\ge = A^{-1}b = I_n \ge = x$
Conclude: $\ge = A^{-1}b = I_n \ge = x$
Conclude: $\ge = A^{-1}b = I_n \ge = x$
Conclude: $\ge = A^{-1}b = I_n \ge = x$
Conclude: $\ge = A^{-1}b = I_n \ge = x$
Conclude: $\ge = A^{-1}b = I_n \ge = x$
Conclude: $\ge = A^{-1}b = I_n \ge = x$
Conclude: $\ge = A^{-1}b = I_n \ge = x$
Conclude: $\ge = A^{-1}b = I_n \ge = x$
Conclude: $\ge = A^{-1}b = I_n \ge I_n \ge x$
Conclude: $\ge = A^{-1}b = I_n \ge I_n \ge x$
Conclude: $\ge = A^{-1}b = I_n \ge I_n$

to
$$A\vec{x}_1 = \vec{e}_1$$
, $A\vec{x}_2 = \vec{e}_2$, ..., $A\vec{x}_n = \vec{e}_n$, usp.
Thun, $X := \begin{bmatrix} \vec{x}_1 & \vec{x}_2 & \cdots & \vec{x}_n \\ \vec{x}_1 & \vec{x}_2 & \cdots & \vec{x}_n \end{bmatrix} = \begin{bmatrix} x_{11} & \cdots & x_{1n} \\ \vdots & \vdots \\ x_{n1} & \cdots & x_{nn} \end{bmatrix}$ satisfies
 $A\vec{X} = A\begin{bmatrix} \vec{x}_1 & \vec{x}_2 & \cdots & \vec{x}_n \\ \vec{x}_1 & \vec{x}_2 & \cdots & \vec{x}_n \end{bmatrix} = \begin{bmatrix} A\vec{x}_1 & \cdots & A\vec{x}_n \\ A\vec{x}_1 & \cdots & A\vec{x}_n \end{bmatrix} = \begin{bmatrix} \vec{e}_1 & \vec{e}_2 & \cdots & \vec{e}_n \\ \vec{e}_1 & \vec{e}_2 & \cdots & \vec{e}_n \end{bmatrix} = \mathbf{I}_n$

<u>NOTE</u>: We still have to check $XA = I_n$ as well, but we will see next time that this is <u>automatic</u>.

Q: What is
$$RE(A)$$
 for A of size new that has unique
solutions to any system $A \cdot \overline{X} = \overline{D}$?
Proposition 3: $RE(A) = I_n$, in particular $A \sim_{row} I_n$.
Proof: $\Gamma = (ank(A) = \# nm - geo rows of A. \leq n = \# nows (A)$
. IF $\Gamma < n$, then we have at heast if we parameter for $A\overline{X} = \overline{O}$, so
we cannot have unique solutions.
. Gondussion: $\Gamma = n = \#$ columns of A. \mathcal{A} so every step of the
staircase for $[A | \overline{O}]$ has length 1.
So $RE(A) = \begin{bmatrix} 4n & 0 & \cdots \\ 0 & 0 & 1 \end{bmatrix} = I_n$

This leads to an algorithm f_7 computing A^{-1} ! We need to solve all n systems $A_{x_1} = \overline{e_1}$, $A_{x_2} = \overline{e_2}$, $A_{x_n} = \overline{e_n}$. We can do this simultaneously!

$$\frac{54}{4} \frac{\text{Algorithm free computing } k^{-1}}{\text{()} \text{ Form the n xen matrix } [A | e_1 | e_2 | ... | e_n] = [A | I_n]}{\text{()} | e_2 | ... | e_n] = [A | I_n]}$$
(c) Use Gauss-Jordan elimination to get A into enduced from
$$[A | I_n] \xrightarrow{\text{(Austrian)}} [RE(A) | B] = [I_n | B]$$

$$(A | I_n] \xrightarrow{\text{(Austrian)}} [RE(A) | B] = [I_n | B]$$

$$(A | I_n] \xrightarrow{\text{(Austrian)}} [RE(A) | B] = [I_n | B]$$

$$(A | E_1 | B) \xrightarrow{\text{(Austrian)}} A (B_1 | B) = e_n$$
In particular $AB = In$.
$$(A | E_1 | B) \xrightarrow{\text{(Austrian)}} A (B_1 | B) \xrightarrow{\text{(A$$

"I2" A' Check: $\begin{bmatrix} 1 & 3 \\ 2 & 5 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} -5 & 3 & 2 \\ 2 & -1 & -1 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} -5+6 & 3-3 & 2-3+1 \\ -10+10 & 6-5 & 4-5+1 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 100 \\ 0 & 10 \\ 0 & 0 \end{bmatrix}$ $\begin{bmatrix} -5 & 3 & 2 \\ 2 & -(-1) \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 3 & 1 \\ 2 & 5 & 1 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} -5 + 6 + 0 & -15 + 15 & -5 + 3 + 2 \\ 2 - 2 & 6 - 5 & 2 - 1 - 1 \\ 0 & 0 & 1 \end{bmatrix} = \mathbf{I}_{3}$ Q. How did we know A was invertible? A we didn't! So far, our only test for invertibility is: A my $RE(A) = \sum_{n} ?$ $N_{OS} A$ is Not invertible Later in the course we will have a different test, via determinants et(A) is a number : . det (A) =0 means A is insertible (A nxn maturx) • Let (A) = 0 _____ is NOT ____.