Letter IX \$1.7 Singular matrices & lincer independence
Recall: Last time weekfined invertible matrices & showed how to compute
An new matrix A is invertible in their exists another new matrix
An new matrix A is invertible in their exists another new matrix
Such that
$$\overline{AB} = In = \overline{BA}$$
, where $I_n = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$ of size new.
(b)
• Perfections: The following statement are equivalent
(i) A is invertible
(ii) A is invertible
(iii) A man in (RE(A) = In)
(i) All lincer systems $\overline{Ax} = \overline{S}$ (as we very \overline{E}) have unique solutions
• Algreithm : $[A | In]$ we equivalent
(Course Townson)
If RE(A) $\neq In$, then A is not invertible
• IF RE(A) $\neq In$, then B satisfies $AB = In$.
• Claim: $BA = In$ as well, so $B = \overline{A}^{T}$.
Idea: Since $[A | In]$ we find the
invertible.
The same new operations invertible.
The same new operations invertible.
 \overline{Ih} Receic projections of matrix inverses:
Theorem : Fix $A \in U$ two new invertible matrices. Then
(in a new $In In = In$)
(in $A^{Th} = In$)
(in $A^{Th} = In$) (in $A^{Th} = In$) (in $A^{Th} = In$)
(in $A^{Th} = In$)

(a)
$$(AC)^{-1} = C^{-1}A^{-1}$$
 (vince $(AC)(C^{-1}A^{-1}) = A(CC^{-1})A^{-1} = AA^{-1} = I_{A}$
 $(C^{-1}A^{-1})(AC) = C^{-1}(A^{-1}A^{-1})^{T}$ (vince $(A^{-1})(AC) = C^{-1}(A^{-1}A^{-1})^{T} = C^{-1}(C = I_{A})$
(b) $(A^{-1})^{-1} = (A^{-1})^{T}$ (vince $(A^{-1})(A^{-1})^{T} = (A^{-1}A^{-1})^{T} = I_{A}^{-1} = I_{A}$
 $(A^{-1})^{T}A^{-1} = (A^{-1})^{T} = I_{A}^{-1} = (A^{-1}A^{-1})^{T} = I_{A}^{-1} = I_{A}^{-1}$
(b) a scalar $a \neq o$, then $(aA)^{-1} = \frac{1}{a}A^{-1}$ (vince $AA (\frac{1}{a}A^{-1})^{T} = d\frac{1}{a}AA^{-1} = I_{A}^{-1}$
(c) $AA^{-1} = I_{A}^{-1}$ (vince $AA (\frac{1}{a}A^{-1})^{T} = d\frac{1}{a}AA^{-1} = I_{A}^{-1}$
(b) $AA^{-1} = I_{A}^{-1}$ (vince $AA (\frac{1}{a}A^{-1})^{T} = d\frac{1}{a}AA^{-1} = I_{A}^{-1}$
(c) $AA^{-1} = A^{-1} = A^{-1}$ (vince $AA (\frac{1}{a}A^{-1})^{T} = d\frac{1}{a}AA^{-1} = I_{A}^{-1}$
(c) $AA^{-1} = A^{-1} = A^{-1}$

\$3. Limor dépendence / indépendence: Fix m, n prostère integres

Assume we are given a set of n rectors in TRM, say & J, ..., Und Definition: We say this set of rectors is linearly dependent if we can find n numbers X1, X2, --, Xn in R NOT all zero, such that $x_1 \overline{v}_1 + x_2 \overline{v}_2 + \cdots + x_n \overline{v}_n = \overline{0}$ $(\overline{0} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \text{ in } \mathbb{R}^n$ Otherwise, we say $\overline{v_1}, \ldots, \overline{v_n}$ are <u>linearly</u> independent. This mans that the <u>mly</u> solution to $x_1v_1 + \cdots + x_nv_n = 0$ is $x_1 = x_2 = \dots = x_n = 0$. <u>Abbuniation</u>: **l.i.** <u>Examples</u>: (1) $\vec{v}_1 = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$, $\vec{v}_2 = \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix}$ is linearly dependent $|\vec{v}_1 + 0\vec{v}_2 = \begin{bmatrix} 0\\0\\0 \end{bmatrix}$ $|x_1 = 1, x_2 = 0$ is a solution) (z) $\vec{v}_1 = \begin{bmatrix} 2 \\ 2 \end{bmatrix}$, $\vec{v}_2 = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$ is linearly independent $X_{1}\overrightarrow{v_{1}} + X_{2}\overrightarrow{v_{2}} = X_{1}\begin{bmatrix} z\\ 0 \end{bmatrix} + X_{2}\begin{bmatrix} z\\ -1 \end{bmatrix} = \begin{bmatrix} X_{1}+X_{2}\\ 2X_{1}+X_{2}\\ -X_{2}\end{bmatrix} = \begin{bmatrix} 0\\ 0\\ 0 \end{bmatrix}$ gives the system $\begin{cases} x_1 + x_2 = 0 \\ 2x_1 + x_2 = 0 \\ -x_2 = 0 \end{cases}$ no augmented matrix [110] 0-10] $\begin{bmatrix} 1 & 1 \\ 2 & -1 \\ 0 & -1 \end{bmatrix} \xrightarrow{R_2 \to R_2} \begin{bmatrix} 1 & 1 \\ 0 & -3 \\ 0 & -1 \end{bmatrix} \xrightarrow{R_2 \to R_3} \begin{bmatrix} 1 & 1 \\ 0 & -1 \\ 0 & -3 \end{bmatrix} \xrightarrow{R_2 \to -R_2} \begin{bmatrix} 1 & 1 \\ 0 & 1 \\ 0 & -3 \end{bmatrix} \xrightarrow{R_1 \to R_2} \begin{bmatrix} 1 & 1 \\ 0 & 1 \\ 0 & -3 \end{bmatrix} \xrightarrow{R_1 \to R_2} \begin{bmatrix} 1 & 1 \\ 0 & 1 \\ 0 & -3 \end{bmatrix} \xrightarrow{R_1 \to R_2} \begin{bmatrix} 1 & 1 \\ 0 & 1 \\ 0 & -3 \end{bmatrix} \xrightarrow{R_1 \to R_2} \begin{bmatrix} 1 & 1 \\ 0 & 1 \\ 0 & -3 \end{bmatrix} \xrightarrow{R_2 \to -R_2} \begin{bmatrix} 1 & 1 \\ 0 & 1 \\ 0 & -3 \end{bmatrix} \xrightarrow{R_1 \to R_2} \begin{bmatrix} 1 & 1 \\ 0 & 1 \\ 0 & -3 \end{bmatrix} \xrightarrow{R_2 \to -R_2} \begin{bmatrix} 1 & 1 \\ 0 & 1 \\ 0 & -3 \end{bmatrix} \xrightarrow{R_1 \to R_2} \xrightarrow{R_2 \to R_2} \begin{bmatrix} 1 & 1 \\ 0 & 1 \\ 0 & -3 \end{bmatrix} \xrightarrow{R_2 \to R_2} \xrightarrow{R_2 \to R_2$ Conclude X, =0 X2=0 so $3\overline{v_1}, \overline{v_2}$ is 1.2.

Note: White
$$A = \begin{bmatrix} v_1 & \dots & v_n \end{bmatrix}$$
 for the next matrix with cls $\vec{v}_1 \cdot \vec{v}_n$
 $d v_1 & \dots & v_n \in A_i$ \longrightarrow The system $A \begin{bmatrix} x_1 \\ x_n \end{bmatrix} = \vec{0}$
has unique solutions
 $d v_1 & \dots & v_n \in A_i$ $d = The system A \begin{bmatrix} x_1 \\ x_n \end{bmatrix} = \vec{0}$ has
infinitely many solutions
 $d v_1 & \dots & v_n \in A_i$ $d v_n = v_n = v_n$
 $d v_n = v_n = v_n = v_n = v_n$
 $d v_n = v_n = v_n = v_n = v_n = v_n$
 $d v_n = v_n = v_n = v_n = v_n = v_n$
 $d v_n = v_n$
 $d v_n = v_$

t = 1 gives a matricial solution so $5\overline{v_1}, \overline{v_2}, \overline{v_3}$ is <u>linearly.dep</u>. A Dependincy relation $\overline{v_1} - 2\overline{v_2} + \overline{v_3} = \overline{0} \longrightarrow \overline{v_1} = 2\overline{v_2} - \overline{v_3}$ dependent linearly $\overline{v_2} + \overline{v_3} = \overline{0} \longrightarrow \overline{v_1} = 2\overline{v_2} - \overline{v_3}$ dependent

Why? We get a homogeneous system A $\vec{x} = \vec{0}$ with A has size m $\times n$, so we have # eqns < # kniables, so the solution \vec{x} cannot be unique. This means the rectors are l.d. §4. Singular matrices:

Definition: An new matrix
$$A = (a_{ij})$$
 is called masingular if
 $A\vec{x} = \vec{O}$ has may me solution (namely the trivial me: $\vec{x} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$)
On the other hand, if the solution is NOT unique, we say A is simpular

<u>Observation 2</u>: If A invertible, then A is musingular because the system $A\vec{x} = \vec{o}$ (choose $\vec{b} = \vec{o}$) has a unique solution.

The converse of this statement is also true because $A \overrightarrow{x} = \overrightarrow{0}$ has a unique solution is and may is all a variables are dependent The size of A proces $RE(A) = I_n$, so A is insertible. Theorem (Summary) The following statements mean one and the same thing for any given native A = (aij) of size nxn. (1) A is invertible (2) Rank of A = n (3) Reduced echelon form of A to In (4) A is musingular (5) Columns of A aren linearly independent vectors in Rⁿ.