Lecture Ix \&1.7 Simgubar matrices \& linear independence
Recall: Last time wedfined invertible matrices a showed how to compute then.

- An $n \times n$ matrix A is invertible if then exists another $n \times n$ mature B such that $\begin{gathered}A B=I_{n}=B A \\ (*)\end{gathered}$, when $I_{n}=\left[\begin{array}{cccc}1 & 0 & \cdots & 0 \\ \hdashline & \ddots & 0 \\ \hdashline & \ddots & 0 \\ 0 & \ddots & 1 & 1\end{array}\right]$ of size $n \times n$.
- Properties: The following statement are equivalent
(1) A is invertible
(2) $A \sim_{n o w} I_{n}\left(\operatorname{RE}(A)=I_{n}\right)$
(3) All linear systems $A \vec{x}=\vec{b}$ (as we vary \vec{b}) have unique silas
- Algrithm: $\left[A \mid I_{n}\right] \xrightarrow[\substack{\text { now penatims } \\ \text { Gauss - Jordan }}]{\longrightarrow}[\operatorname{RE}(A) \mid B]$
. If $\operatorname{RE}(A) \neq I_{n}$, then A is not invertible
- If $\operatorname{RE}(A)=I_{n}$, then B satisfies $A B=I_{n}$.
- Claim: $B A=I_{n}$ as well, so $B=A^{-1}$.

Ida: Since $\left[A \mid I_{n}\right] \sim_{\text {now }}\left[I_{n} \mid B\right]$ then $I_{n} \sim B$, and this will say B is imsettible.

The same now operations, will give $\left[B \mid I_{n}\right] \longrightarrow\left[I_{n} \mid A\right]$ (in reese order)
frying $B A=I_{n}$.
sI. Algebraic proputies of matrix inverses:
Theorem: Fix A, C two $n \times n$ invertible matrices. Then
(1) $I_{n}^{-1}=I_{n}$ $\left(\right.$ sima $\left.I_{n} I_{n}=I_{n}\right)$
(2) $\left(A^{-1}\right)^{-1}=A$
$\left(\right.$ sima $A^{-1} A=A A^{-1}=I_{n}$, so A is thinned
(3) $(A C)^{-1}=C^{-1} A^{-1}$
isince $(A C)\left(C^{-1} A^{-1}\right)=A\left(C C^{-1}\right) A^{-1}=A A^{-1}=I_{n}$

$$
\left.\left.\left(C^{-1} A^{-1}\right)(A C)=C^{-1}\left(A^{-1} \frac{\frac{1}{A}}{A}\right)^{\prime}\right] C=C^{-1} C=I_{n}\right)
$$

(4) $\left(A^{\top}\right)^{-1}=\left(A^{-1}\right)^{\top}$

I since

$$
\begin{aligned}
& \left(A^{\top}\right)\left(A^{-1}\right)^{\top}=\left(A^{-1} A\right)^{\top}=I_{n}^{\top}=I_{n} \\
& \left.\left(A^{-1}\right)^{\top} A^{\top}=\left(A A^{\prime \prime}\right)^{\top}=I_{n}^{\top}=I_{n}\right)
\end{aligned}
$$

(5) a scalar $a \neq 0$, then $(\alpha A)^{-1}=\frac{1}{\alpha} A^{-1} \quad\left(\sin c \alpha A\left(\frac{1}{\alpha} A^{-1}\right)=\alpha_{1} A A^{-1}=I_{n}\right)$

TODAY: Alternative characterization of invertible matrices.
\$2. 2×2 invertible matrices:
$\operatorname{det}(A)$
Theorem: $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$ is invertible if, and nay if, $\Delta=a d-b c \neq 0$ Furthermore, $A^{-1}=\frac{1}{a d-b c}\left[\begin{array}{cc}d & -b \\ -c & a\end{array}\right]$

Why? Assume $\Delta \neq 0$ \& check the formula for A^{-1} works

$$
\begin{aligned}
{\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right] \frac{1}{\Delta}\left[\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right]=\frac{1}{\Delta}\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\left[\begin{array}{cc}
d & -b \\
-c a
\end{array}\right]=\frac{1}{\Delta}\left[\begin{array}{cc}
\Delta & -a b+a b \\
-c d+c d & \Delta
\end{array}\right] } \\
\cdot \frac{1}{\Delta}\left[\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right]\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]=\frac{1}{\Delta}\left[\begin{array}{cc}
\Delta & d b-b d \\
-c a+a c & \Delta
\end{array}\right]=I_{2}
\end{aligned}
$$

Conversely, assume $\Delta=a d-b c=0$. We show that $A \vec{x}=\left[\begin{array}{l}0 \\ 0\end{array}\right]$ dosn't have a unique solution. If $A=C$, thesis is clare, so we can assume $A \neq 0$
(1) CASE $1:[c, d] \neq[0,0]$

$$
\vec{A}\left[\begin{array}{r}
d \\
-c
\end{array}\right]=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\left[\begin{array}{c}
d \\
-c
\end{array}\right]=\left[\begin{array}{c}
\Delta \\
c d-d c
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \quad \text { so }\left[\begin{array}{c}
d \\
-c
\end{array}\right] \neq\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

ζ not the zeno recto
also solves the system.
(2) CASE 2: $[c, d]=[0,0] \quad$ (so both $c=0$ a $d=0]$
since $A \neq 0$, we know $[a, b] \neq[0,0]$. Then $A\left[\begin{array}{c}-b \\ a\end{array}\right]=\left[\begin{array}{c}-a b+a b \\ 0\end{array}\right]=\left[\begin{array}{l}0 \\ 0\end{array}\right]$ \& we conclude $\left[\begin{array}{c}-b \\ a\end{array}\right] \neq\left[\begin{array}{l}0 \\ 0\end{array}\right]$ also solves the system.
s3. Limor defendence/indefendence: Fix m, "pritise integers
Assume we are given a set of n rectors in \mathbb{R}^{m}, say $\left\{\vec{v}_{1}, \ldots, \vec{v}_{n}\right\}$ Definition: We say this set of vectors is limarly dependent if we can find n numbers $x_{1}, x_{2}, \ldots, x_{n} m \mathbb{R}$ NOT all zero, such that $x_{1} \vec{v}_{1}+x_{2} \vec{v}_{2}+\cdots+x_{n} \vec{v}_{n}=\overrightarrow{0}$

$$
\left(\overrightarrow{0}=\left[\begin{array}{c}
0 \\
\vdots \\
0
\end{array}\right] \text { in } \mathbb{R}^{m}\right)
$$

Otherwise, we say $\vec{r}_{1}, \ldots, \vec{r}_{n}$ are limarly independent. This mans that the sly solution $T_{0} \quad x_{1} \vec{v}_{1}+\cdots+x_{n} \vec{v}_{n}=\overrightarrow{0}$ is $x_{1}=x_{2}=\ldots=x_{n}=0 . \quad$ Abburiation: \&.i.

Examples: (1) $\vec{v}_{1}=\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right], \vec{v}_{2}=\left[\begin{array}{c}1 \\ 0 \\ -1\end{array}\right]$ is limerly dependent

$$
1 \vec{r}_{1}+0 \vec{v}_{2}=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] \quad\left[x_{1}=1, x_{2}=0 \quad \text { is a splutim }\right)
$$

(2) $\vec{v}_{1}=\left[\begin{array}{l}1 \\ 2 \\ 0\end{array}\right], \vec{v}_{2}=\left[\begin{array}{c}1 \\ 1 \\ -1\end{array}\right]$ is limarly independent

$$
x_{1} \vec{v}_{1}+x_{2} \vec{v}_{2}=x_{1}\left[\begin{array}{l}
1 \\
2 \\
0
\end{array}\right]+x_{2}\left[\begin{array}{c}
1 \\
1 \\
-1
\end{array}\right]=\left[\begin{array}{c}
x_{1}+x_{2} \\
2 x_{1}+x_{2} \\
-x_{2}
\end{array}\right]=\left[\begin{array}{c}
0 \\
0 \\
0
\end{array}\right]
$$

gives the system $\left\{\begin{array}{r}x_{1}+x_{2}=0 \\ 2 x_{1}+x_{2}=0 \\ -x_{2}=0\end{array} \quad\right.$ ns augmented matrix $\left[\begin{array}{rr|r}1 & 1 & 0 \\ 2 & 1 & 0 \\ 0 & -1 & 0\end{array}\right]$

$$
\left[\begin{array}{cc}
1 & 1 \\
2 & -1 \\
0 & -1
\end{array}\right] \xrightarrow[R_{2} \rightarrow R_{2}-2 R_{1}]{\longrightarrow}\left[\begin{array}{cc}
1 & 1 \\
0 & -3 \\
0 & -1
\end{array}\right] \xrightarrow[R_{2} \leftrightarrow R_{3}]{\longrightarrow}\left[\begin{array}{cc}
1 & 1 \\
0 & -1 \\
0 & -3
\end{array}\right] \xrightarrow[R_{2} \rightarrow-R_{2}]{\longrightarrow}\left[\begin{array}{cc}
1 & 1 \\
0 & 1 \\
0 & -3
\end{array}\right] \xrightarrow[\substack{R_{3} \rightarrow R_{3}+3 e_{2}}]{\longrightarrow}\left[\begin{array}{cc}
1 & 1 \\
0 & 1 \\
0 & 0
\end{array}\right] \xrightarrow{\stackrel{\| 1}{v_{1}}} \xrightarrow{n} \xrightarrow{v_{2}}
$$

conclude $\begin{array}{l}x_{1}=0 \\ x_{2}=0\end{array}$ so $\left.\quad 3 \vec{v}_{1}, \vec{v}_{2}\right\}$ is l.i.

Note: Write $A=\left[\vec{v}_{1}, \ldots, \vec{v}_{n}\right]$ for the $m \times n$ matiux with cols $\vec{v}_{1}, \ldots \vec{v}_{n}$

- $\left\{\overrightarrow{v_{1}}, \ldots, \overrightarrow{v_{n}}\right\} \quad \ell i \longleftrightarrow$ The system $A\left[\begin{array}{l}x_{1} \\ \vdots \\ x_{n}\end{array}\right]=\overrightarrow{0}$ has unique sotatine
- $\left\{\vec{v}_{1}, \ldots, \vec{v}_{n}\right\}$ l.d \longleftrightarrow The system $A\left[\begin{array}{l}x_{1} \\ \dot{x}_{n}\end{array}\right]=\overrightarrow{0}$ has infinitely many solutions.
(trivial sole is nor the only me)
Exercise: Determine whether the following 3 rectors $m \mathbb{R}^{3}$ are limarly independent s dependent.

$$
\vec{v}_{1}=\left[\begin{array}{c}
1 \\
2 \\
-1
\end{array}\right], \quad \overrightarrow{v_{2}}=\left[\begin{array}{l}
3 \\
4 \\
3
\end{array}\right], \quad \vec{v}_{3}=\left[\begin{array}{l}
5 \\
6 \\
7
\end{array}\right]
$$

Solution: Write the system $x_{1} \vec{v}_{1}+x_{2} \vec{v}_{2}+x_{3} \vec{v}_{3}=\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right]$ as

$$
\underbrace{\left[\begin{array}{ccc}
1 & 3 & 5 \\
2 & 4 & 6 \\
-1 & 3 & 7
\end{array}\right]}_{=A}\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] \quad 3 \text { egns \& } 3 \text { variables }
$$

- Put A in reduced ecculon from:

$$
\begin{aligned}
& {\left[\begin{array}{ccc}
1 & 3 & 5 \\
2 & 4 & 6 \\
-1 & 3 & 7
\end{array}\right] \xrightarrow[\substack{R_{2} \rightarrow R_{2}-2 R_{1} \\
R_{3} \rightarrow R_{3}+R_{1}}]{ }\left[\begin{array}{ccc}
1 & 3 & 5 \\
0 & -2 & -4 \\
0 & 6 & 12
\end{array}\right] \xrightarrow[R_{2} \rightarrow \frac{R_{2}}{-2}]{ }\left[\begin{array}{lll}
1 & 3 & 5 \\
0 & 1 & 2 \\
0 & 6 & 12
\end{array}\right] \xrightarrow[R_{3} \rightarrow R_{3}-6 R_{2}]{ }} \\
& \left.\left[\begin{array}{ccc}
1 & 3 & 5 \\
0 & 1 & 2 \\
0 & 0 & 0
\end{array}\right] \xrightarrow[R_{1} \rightarrow R_{1}-3 R_{2}]{ }\left[\begin{array}{ccc}
1 & 0 & -1 \\
0 & 1 & 2 \\
0 & 0 & 0
\end{array}\right] \quad \begin{array}{l}
x_{1}, x_{2} \text { dependent } \\
\text { echelon }
\end{array}\right] \begin{array}{lll}
x_{3} \text { independent }
\end{array}
\end{aligned}
$$ echelon $\uparrow \uparrow$ udiech.

Solutions:?

$$
\begin{aligned}
& x_{1}-x_{3}=0 \\
& x_{2}+2 x_{3}=0
\end{aligned} \quad \text { sises } \quad\left\{\begin{array}{l}
x_{1}=t \\
x_{2}=-2 t \\
x_{3}=t \quad t \text { pe }
\end{array}\right.
$$

$t=1$ gives a matrinial solution so $\left\langle\vec{r}_{1}, \vec{r}_{2}, \vec{v}_{3}\right\}$ is lineally．dep．
A Dependency relation $\vec{v}_{1}-2 \vec{v}_{2}+\vec{v}_{3}=\overrightarrow{0} m \vec{v}_{1}=2 \vec{v}_{2}-\vec{v}_{3}$ dependent lemony on $\vec{v}_{2} \& \vec{v}_{3}$ ．
Theorem：If we are given n vectors in $\mathbb{R}^{m} \& n>m$ ，then the vectors an limoily dependent
Why？We get a honogeuroes system $A \vec{x}=\overrightarrow{0}$ with A has size $m \times n$ ，so we han f equs $<$ 我 variables，so the solution \vec{x} count be unique．This means the rectors are led．
sh．Simpular matrices：
Definition：An $n \times n$ matrix $A=(a i j)$ is called nonsimgulan if $A \vec{x}=\overrightarrow{0}$ has only me solution（namely the trivial me：$\vec{x}=\left[\begin{array}{l}0 \\ \vdots \\ 0\end{array}\right]$ ） On the other hond，if the solution is NOT unique，we say A is singular

Obsernatin1：A is un－simgular \longleftrightarrow Columns of A are $l . i$. rectors in \mathbb{R}^{n}
A is singular \longleftrightarrow Columns of A are l ．dep．
Obsentitin 2：If A imeetible，then A is monsingular because the system $A \vec{x}=\overrightarrow{0} \quad($ choose $\vec{b}=\overrightarrow{0}$ ）has a unigen solution．
The converse of this statement is also twee because $A \vec{x}=\overrightarrow{0}$ has a unique solution if and all if all n variables con dependent The size of A frees $R \in(A)=I_{n}$ ，so A is insectile．

Thoum (Summary) The fellowing stateruents man me and the same theng for any giren watixx $A=(a i j)$ of rize $n \times n$.
(1) A is insertible
(2) Rank of $A=n$
(3) Reduced ecculon from of A es I_{n}
(4) A is runsingular
(5) Columns of A arenlimally independent bectors in \mathbb{R}^{n}.

