Lecture $X$ : § 2.1 Vectors in the plane
\$2.2 Vectors in space
S1. Introduction
Up $T_{0}$ now, we re describe Euclidean space $\mathbb{R}^{n}$ as the space of $n \times 1$ matrices, with addition, scalar multiplication and dot product operation. All these operations an defined alger rascally \& they are well behaved.

- Today's Focus: Fr $n=2$ \& 3 , vectors can be down \& these operations have clear geometric meaning.
- Historically speaking, the idea of bettors comes from Physics (~1690's) after Newton's laws of motion wee written down. The fist "rector" was force acting on a particle, where in order the accurately apply Newton's Principles we need to know not only the "mapuitede" but also the "direction" in which the free is acting.
§2. Coordenate systems in 2 \& 3 dimensions: (cartesian cordenates) Definition: A point $m \mathbb{R}^{2}$ is specified by $z$ real numbers.

$\qquad$ 3 Z

- Right-hand rule fo $(x, y, z)$-cordenates m $\mathbb{R}^{3}$ : If you place your right hand along the $x$-axis in such a way that your fingers can worse Towards the $y$-axis, then your thumb will put in the $z$-direction
§3. Vectors in $\mathbb{R}^{2} \& \mathbb{R}^{3}$ :
Geometrically, a rector is represented as a directed lime segment joining two prints $P \& Q$.

- stating pint ( $r$ rail of $\vec{v}$ ) $=P$
- terminal print (or head of $\vec{v}$ ) $=Q$

Sometimes we writ h $\vec{v}=\overrightarrow{P Q}$

- Length of $\vec{v}=$ magnitude

Observations: (1) We don't distinguish between parallel line segments of the same length \& printing in the same direction


$$
\overrightarrow{P Q}=\overrightarrow{P^{\prime} Q^{\prime}}
$$

(2) $\overrightarrow{0}=$ the my rector of magnitude 0 and no dinctim

$$
=\overrightarrow{P P} \text { fr any print } P \text {. }
$$

Q: lan we have a consistent choice to draw rectors?
A: YES, place the rail at the origin $((0,0) \pi(0,0,0))$


Name: prition rector
After this choicuis made, we identify the pritim sector with the location of its head $P$, ie. $\vec{v}=\overrightarrow{O P}$ The cordernates of $P$ are the components of $\vec{v}$

- As a $2 \times 1$ mature, avector in $\mathbb{R}^{2}$ is represented geometrically by joining $P=(a, b)$ $T_{0} Q=(c, d)$ in the $(x, y)$-plane is given by

$$
\begin{aligned}
& \overrightarrow{P Q}=\left[\begin{array}{l}
c-a \\
d-b
\end{array}\right] \\
& x \text {-comment }=c-a \\
& y \text {-compment }=d-b
\end{aligned}
$$



- Similarly in 3-dimensims: if $P=\left(a_{1}, b_{1}, c_{1}\right) \& Q=\left(a_{2}, b_{2}, c_{2}\right)$, then

$$
\begin{aligned}
& \overrightarrow{P Q}=\left[\begin{array}{l}
a_{2}-a_{1} \\
b_{2}-b_{1} \\
c_{2}-c_{1}
\end{array}\right] \quad \text { ("difference of coordinates") } \\
& x \text {-compment }=a_{2}-a_{1} ; y \text {-compment }=b_{2}-b_{1} ; z \text {-compreent }=c_{2}-c_{1}
\end{aligned}
$$

Example: If $P=(1,1,1)$ and $\overrightarrow{P Q}=\vec{v}=\left[\begin{array}{c}2 \\ -1 \\ 4\end{array}\right]$, then $Q=(a, b, c) \quad$ satistion $\quad \begin{aligned} & a-1=2 \\ & b-1=-1 \\ & c-1=4\end{aligned} \quad$ ms $Q=(3,0,5)$

9 Why do we like prition vectors?
A We can decide when too rectors agree: $\vec{v}=\vec{\omega}$ it their position
Example: Given $\overrightarrow{A B}$ with prition rector $\left[\begin{array}{l}2 \\ 2\end{array}\right]$, find the coordinates of $B$ given $A=(3,4)$ a dow $\overrightarrow{A B}$.


$$
\begin{array}{ll}
B=\left(b_{1}, b_{2}\right) & A=(3,4) \\
\vec{v}=\overrightarrow{A B}=\left[\begin{array}{l}
2 \\
2
\end{array}\right]=\left[\begin{array}{l}
b_{1}-3 \\
b_{2}-4
\end{array}\right]
\end{array}
$$

So $\quad 2=b_{1}-3$
gives $B=(2+3,2+4)=(5,6)$
$2=b_{2}-4$

- Magnitude of $\vec{v}=$ ? If $\vec{v}=\overrightarrow{P Q}$, then $\|\vec{v}\|$ is the distance fem $P$ to $_{0}$. Algebraically:

$$
\begin{aligned}
& \vec{v}=\left[\begin{array}{l}
a \\
b
\end{array}\right] \text { in } \mathbb{R}^{2} m\| \| \vec{v} \|=\sqrt{a^{2}+b^{2}} \\
& \vec{v}=\left[\begin{array}{l}
a \\
b \\
c
\end{array}\right] \text { in } \mathbb{R}^{3} \text { ms }\|\vec{v}\|=\sqrt{a^{2}+b^{2}+c^{2}}
\end{aligned}
$$

§4. Addition a Scalar Multiplication

- Algebraically: Vectors are viewed as $2 \times 1$ r $3 \times 1$ matrices and scaled \& added comprentwise.
Example: $5\left[\begin{array}{c}2 \\ 1 \\ -1\end{array}\right]+3\left[\begin{array}{l}-2 \\ -4 \\ -7\end{array}\right]=\left[\begin{array}{l}5 \cdot 2+3(-2) \\ 5 \cdot 1+3(-4) \\ 5 \cdot(-1)+3 \cdot 7\end{array}\right]=\left[\begin{array}{c}4 \\ -7 \\ 16\end{array}\right]$
- Geometrically: We have "Triangle \& parallelogram laws" fr rector additim:


Triangle Law


Parallelogram Law
(1) Triangle Law: More $\vec{v}$ parallel To itself until Tail dr $\vec{v}=$ Head r $1 \vec{u}$ Then $\vec{u}+\vec{v}$ starts at the tail of $\vec{u}$ and ends at the head of the hanslated $\vec{v}$.
(2) Parallelogram Law: If $\vec{u} \& \vec{v}$ stat at the same print, complete the parallelogram. Then $\vec{u}+\vec{v}$ starts at the common Tail and ends at the spprite corner is the parellebgam.

- Fr scalar multiplication, we have to change the length of the vector while either retaining the same direction (if scalar <0) or flipping the direction (if scalar <0)

m

- For substraction rdiffeunce : combine addition \& scalar null $\vec{u} \vec{v}=\vec{u}+(-\vec{v})$.


Triangle Law


Pacalleloyam Law
es. Coordinate Vectors (or basic unit rectors)

$$
\begin{gathered}
\vec{e}_{1}=\left[\begin{array}{l}
1 \\
0
\end{array}\right], \vec{e}_{2}=\left[\begin{array}{l}
0 \\
1
\end{array}\right] ; \quad \vec{e}_{1}=\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right], \\
\text { in } \mathbb{R}^{2} \quad \vec{e}_{2}=\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right], \vec{e}_{3}=\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right] \\
\\
\text { in } \mathbb{R}^{3}
\end{gathered}
$$

In Calculus III, we use $\vec{i}, \vec{j}, \vec{k}$ fr these, and with vectors as pairs or triples of numbers sonounded by angular brackets

$\left[\begin{array}{c}1 \\ -1 \\ 4\end{array}\right]$ in this corse

vs $\langle 1,-1,9\rangle$ in Calculus III.

Pasprition: Any rector $m \mathbb{R}^{2} r \mathbb{R}^{3}$ is a limes combination of basic unituectes
Why? $\left[\begin{array}{l}a \\ b\end{array}\right]=a\left[\begin{array}{l}1 \\ 0\end{array}\right]+b\left[\begin{array}{l}0 \\ 1\end{array}\right]$

$$
\left[\begin{array}{l}
a \\
b \\
c
\end{array}\right]=a\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]+b\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right]+c\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]
$$

Definition: A unit rector is any rector of length 1.
Example: Find the unit rector in the same dirctim as $\left[\begin{array}{l}1 \\ 4 \\ 7\end{array}\right]$

$$
\vec{v}=\left[\begin{array}{l}
1 \\
4 \\
7
\end{array}\right] \quad m\|\vec{v}\|=\sqrt{1^{2}+4^{2}+7^{2}}=\sqrt{1+16+49}=\sqrt{66}
$$

Answer: $\vec{u}=$ unit vector $=\frac{1}{\|\vec{v}\|} \vec{v}=\left[\begin{array}{l}1 / \sqrt{66} \\ 4 / \sqrt{66} \\ 7 / \sqrt{66}\end{array}\right]$
Example: Same question, but wow require leupth 8 \& spprite direction to $\vec{v}$ Son: $\vec{w}=-8 \cdot \vec{u}=\frac{-8}{\|\vec{v}\|} \vec{v}=\left[\begin{array}{l}-8 / \sqrt{66} \\ -32 / \sqrt{66} \\ -56 / \sqrt{66}\end{array}\right]$

